ENERGY RELATIONSHIPS AND THE PRODUCTIVITY OF APALACHICOLA BAY

Robert J. Livingston ${ }^{1}$
Richard L. Iverson ${ }^{2}$
David C. White 1

Florida Sea Grant
Technical Paper

ENERGY RELATIONSHIPS AND THE PRODUCTIVITY OF APALACHICOLA BAY

Robert J. Livingston ${ }^{1}$
Richard L. Iverson ${ }^{2}$
David C. White 1

1 Dępartment of Biological Science
 2 Department of Oceanography Florida State University Tallahassee, Florida

Final Report of Project R/EM-4

The information contained in this paper was developed under the auspices of the Florida Sea Grant College Program, with support from the NOAA Office of Sea Grant, U. S. Department of Commerce, grant number 04-6-158-44055. This document is a Technical Paper of the State University System of Florida Sea Grant College Program, 2001 McCarty Hall, University of Florida, Gainesville, FL 32611. Technical Papers are duplicated in limited quantities for specialized audiences requiring rapid access to information, which may be unedited.
i. Summary of Results i.
v. Theses and Dissertations v.
I. Introduction 1
Robert J. Livingston
II. Special Program for Ecological Science (SPECS): Summary of Capabitities . 5Robert J. LivingstonGlenn C. Woodsumi
III. Biomass Transformations 12
Robert J. Livingston
F. Graham Lewis, IIIGerard G. KobylinskiPeter F. SheridanBradford G. McLaneBruce PurcellGlenn C. Woodsum
IV. Physico-chemical Relationships: Sedimentology and Habitat Structure 19
Robert J. Livingston
Peter F. Sheridan
Gerard G. Kobylinski
F. Graham Lewis, III
Bradford G. McLane
V. Phytoplankton Productivity and Nutrient Analysis 67
Richard L. IversonVernon B. Myers
VI. Detritus: Micro- and Macro-particulates 156
Robert J. Livingston
Peter F. Sheridan
F. Graham Lewis, III
Gerard G. Kobylinski
VII. Microbial Contribution to the Energy Budget of Apalachicola Bay 203
David C. White
R. J. Bobbie
J. S. Herron
J. D. King
Susan J. Morrison
VIII. Litter-Associated Organisms 229Robert J. LivingstonPeter F. SheridanRobert L. HowellKathryn G. Winter
IX. Benthic Infauna 256
Bradford G. McLanePeter F. SheridanRobert J. Livingston
X. Grassbed (Vallisneria Americana) Assemblages 265
Bruce Purcell
Robert J. Livingston
XI. Associations of Epibenthic Fishes and Invertebrates 270
Robert J. LivingstonPeter F. Sheridan
Gerard G. Kobylinski
F. Graham Lewis, III
XII. Trophic Resource Partitioning Among Juvenile Fishes 412
Peter F. SheridanRobert \mathcal{J}. Livingston
XIII. Compartmental Model of the Apalachicola Bay System In Progress
Richard L. IversonRobert J. Livingston
David C. White
XIV . Application of Data to Planning and Management 434
Robert J. Livingston

i. Sumnary of Results

This report respresents an integration of the results of 5 years of study concerning short- and long-term changes in habitat structure, energy relationships, and biotic functions of the Apalachicola Estuary.

Sediment analysis in the bay showed that seasonal variations, proximity to the river, spatial relationships with benthic macrophytes, and upland drainage patterns arl influenced the quabitative characteristics of the surface sediments. There was a reduction in grain size and an increase in organic content from the outer portions of Apalachicola Bay to the upper reaches of East Bay. While seasonal variation of water temperature appeared relativelysstable from year to year, there was a long-term trend toward reduced salinity which could not be entirely explained in terms of river flow and local rainfall patterns. Seasonal salinity levels were detemined by fluctuations of the Apalachicola River, proximity to land runoff, and local rainfall. Winter-spring flooding of the river was associated with reductions in salinity and light transmission, and increases in color, turbidity, and nutrients. Long-term changes in various water quality parameters were noted, and were particularly evident in East Bay. Spatial variability and long-term trends in major physico-chemteal variables were thus determined by river flow, local rainfall (land runoff), basin configuration, and various meteorological phenomena.

Apalachicola River discharge was the primary factor controlling nutrient concentration in the Apalachicola Estuary. Nitrates peaked during wither periods of high river flow; phosphates increased during these periods although maxima resulted from episodic wind-mixing of the sediments. Phytoplankton productivity was maximal during spring months. During summer periods, phosphate was the primary nutrient limiting phytoplankton producttvity in East Bay and Apalachicola Bay, with nitrates Beconting limiting in Apalachicola Bay with less frequency than phosphate. Overall, temperature was a major limiting factor for phytoplankton productivity. Phytoplankton productivity in this estuary was higher than that in other areas along the coast, and was considered to be a major source of organic carbon for various organisms in this area.

A survey of macrodetritus in the Bay showed that there are spatial and temporal patterns of occurrence. During winter-spring periods of increased river flow and upland flooding, leaf matter and wood debris predominate at stations influenced by the river. Such matter comes from flood-plain thee associations including various species of oak, maple, water Tupelo, river birch, sweetgum, and cottenwood. Fall peaks of macrodet $\boldsymbol{r}^{*} i t u s$ are dominated by benthic macrophytes such as Gracilaria foliifera, Halodule wrightii, and Ulya lactuca. The annual bimodal distribution of macroparticulates was evident only during years when river flow exceeded certain flow rates, with bay-wide (conservative) estimates approximating 150 tons (dry weight) per month during such periods. Microdetritus ($45 \mu-2 \mathrm{~mm}$) found at the mouth of the Apalachicola River had a similar relationship with river flow; the organic fractions (ash-free dry weight) approximated 900 tons/month duringperiods of peak river flow. Although functions such as residence time, flushing rates, utilization patterre, etc remain unknown, the general relationship of detritus movement and availability in the bay appears to be closely associated with the seasonally pulsed patterns of river flow and flooding. Micro- and macroparticulate matter reached peak levels only at times when river flooding exceeded 60,000 cubic feet per second. There was thus an association of the presence of particulate matter in the bay with a pulsed river system and periodic flooding of upland flood plain areas.

Preliminary estimates of the total contribution of allochthonous particulate matter to the energy budget of the bay indicate that such detritus is comparable to the phytopjankton productivity as a source of energy.

Methods to assess the mass, activity, and population structure of the estuarine detrital microflora have and are being developed. These methods could provide data with which to initiate correlations between the activities of these heretofore unstudied microbes and the rest of the estuarine food web. The methods were designed to preserve the community associations and interactions with as little selectiva pressure as possible. Measures of mass such as the muramic acid level, the total phospholipid formed from $\mathrm{H}_{3}{ }^{32} \mathrm{PO}_{4}$, and ATP leve? correlate with the expected respiratory activity. Measures of growth by pulse chase experiments show correlations between rates of phospholipid syathesis, muramic acid turnover, glycolipid turnover, and saturation of the cardiolipid precusor pool. Initial comparisons show when microbial mass and activity increase, so do the species diversity and numbers of the detrital benthic fauna. Comparison of types of detritus, or between pine needles and teflon mimics of pine needles, show coordination of microbial activities and the benthic food webs By analysis of the components of the newlyformed lipids, it has been possible to document successional sequences on detrial surfaces that coordinate with scanning electron micrographs. With these and subsequently developed methods, we hope to determine the role of microfloral communities in the trophodynamics of the estuarine food web with specialiemphasis on controlling extermal functions such as pollution.

Litter-associated organisms were surveyed in a series of field experiments. This fauna was dominated by isopods, amphipods, and decapods. Preliminary experiments indicated that macrodeteitus such as leaf matter may serve as a substrate for shelter and/or microbial accumulation. Numbers of individuals and species and species richness generally increased with increases in salinity at all stations. The allochthonous leaf matter was associated with a distinctive biota which subsequently serves as a source of food for various dominant juvenile fishes in the area.

The benthic infauna in the Apalachicola Bay System was surveyed for seasonal distribution and spatial relationships of biomass, species composition, and commenity struatenee. This was dominated by euryhaline and eurythermal crustaceans (Tanaidaceans, amphipods) and polychaete worms which tend to reach peak abundance during late winter and spring months. Many such species, as selective and nonsklective deposit feeders, feed on fine detrital matter and, in turn, are fed upon by predacious polychaetes, crustaceans, and benthic fishes. There were considerable differeneesein biomass distribution in the bay with a range from 0.065 to 56.378 g (ash-free dry weight)/ m^{2}. The highest such values were found off St. George Island and portions of East Bay in areas associated with grassbeds. Grassbed (Vallisneria americana) productivity was estimated from 322 to $353 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$ with standing crops between $500-600 \mathrm{~g} / \mathrm{m}^{2}$ peaking during surmer and fall months. Die-offs of such grasses occurred during fall periods of reduced water temperature, and were associated with fall peaks of secondary productivity in the bay. Certain East Bay grassbeds were dominated by the gastropod, Neritina reclivata. Other organisms such as crustaceans and fishes were also represented. Peak animal biomass occurred during spring (March-May) and late fall (November-December) periods, and such changes seemed to be timed in a general way with spring peaks of epibenthic organisms and fall increases in macrophyte-derived detritus.

Long-term (5 year) trends of epibenthic fishes and invertebrates were noted. After the first year, there were regular seasonal patterns of fish abundance, species representation, and community structure. There was a regular succession
of dominant fishes each year (late winter-spring: Micropogon undulatus, Leiostomus xanthurus; summer-fall: Cynoscion arenarius; late fal1: Anchoa mitchilli). Three of 4 dominant fish associations were stivongly affected by time pulses of river flow. Generally, fish numbers and biomass peaked in spring and fall. During the five-year study period, total numbers of fishes reached a low point during the third year of sampling (3/74-2/75). Invertebrate numbers and blomass usually peaked during spring and fall months. In this case, reduced numbers occurred during the third and fourth years of sampling (3/74-2/76).

Resource (food) partitioning of the dominant juvenile fishes of the Apalachicola Estuary was studied. Anchoa mitchilli fed primarily on copepods (Acartia sp.) anchovies switched from copepods to epibenthic and benthic organsims such as mysids and insect larvae. Polychaetes formed the basis of the diet of Micropogon undulatus which peaked during winter periods. This species fed primarily on infauna, detritus, shrimp, and juvenile fishes. Leiostomus xanthurus fed on a variety of iterns including harpacticoid copepods, polychaetes, insect larvae, and bivalves. Cynoscion arenarius fed primarily on fishes (including Anchoa mitchilli) and mysids. A size class analysis indicated trends in intraspecific trophic relationships within a temporal and spatial context. There was efficient partitioning of food resources in the Apalachicola Estuary with each of the dominant species participating in a different trophic spectrum. The various biotic components were linked to a seasonal succession of energy inputs whdth vere related to river flow, detritus influxes, phytoplankton blooms, and benthic macrophyte die-offs. The seasonal river flow pattem, as a major determinant of the physicechemical environment of the bay, contributed to the seasonal succession of trophic phenomena. These data tend to clarify various aspects of the distinct temporal succession of biota in the Apalachicola Estuary as a funotion of energy input and physico-chemical limiting functions.

The scientific data generated from this project have been used for various planning and management decisions. This has involved associated projects with Franklin County officials, state and federal agencies, and private concerns such as pulp mill interests and local developers. Personnel of this project have continued to work with the florida agencies toward identification of envirommentally sensitive portions of the system. This has resulted in the $\$ 8$ million purchase of wetlands along the Lower Apalachicola Valley. More than 28,000 acres have been purchased to date, and Sea Grant information has also been used in purchases of thousands of acres of St. Geerge Island and Little St. George Island.

Sea Grant personnel were also involved in the generation of a published compendium of data on the entire Apalachicola Valley to serve as a basis for further management decisions in this area. In addition, contributions were made to local planning functions including D.R.I. evaluations, water hyacinth control programs, public educational programs, etc. Various educational applications of the data base through newspaper articles and public meetings allowed a translation of key scientific concepts for public consumption. In addition, direct interactions have been made with various federal agencies (Environmental Protection Agency, National Aeronautics and Space Administration, Army Corps of Engineers). This has resulted in the current evaluation by the Office of Coastal Zone Management for designation of the Apalachicola Estuary as an Estuarine Sanctuary. Eventually, through local, state, and federal interactions, a comprehensive plan for the Apalachicola Valley may be developed which can serve as a model for futtone wetlands planning in other drainage systems. A six county planning group has been established which, with advice from various state agencies, will attempt to develop a set of guidelines for local planning (Zoning ordinances, etc.).

Overall, this Sea Grant project could serve as a catalyst for a basin-wide planning program which would permit orderly development of the Apalachicola Valley while protecting the important natural resources of this area.
v. THESES AND DISSERTATIONS

1. Bechtold, R.E. 1976. A kinetic analysis of leaf litter-associated microbial activity in Apalachicola Bay. Master's Thesis, Florida State University. (White)
2. Bobbie, R.J. 1976. Esterese activities and oxygen uptake of the endogenous microflona associated with three types of litter in a North Florida estuary. Master's Thesis, Florida State University. (White)
3. Duncan, James. 1977. Short-term inpact of upland clear-cutting activities on assemblages of epibenthic fishes and invertebrates in East Bay. Master's Thesis, Florida State University. (Livingston)
4. laughlin, Roger A. 1976. Avoidance of blue crabs (Callinectes sapidus) to storm water runoff. Master's Thesis, Florida State University. (Livingston)
5. McLane, Bradford G. 1977. Effects of clear-cutting on the benthic infauna of the Apalachicola Estuary. Master's Thesis, Florida State University. (Livingston)
6. Myers, Vernon B. 1977. Aspects of nutrient limitation of phytoplankton productivity in the Apalachicola Bay System. Ph.D. Dissertation, Florida State University. (Iverson)
7. Purcell, Bruce. 1977. Effects of stormwater runoff on grassbed assemblages in East Bay. Master's Thesis, Florida State Uhiversity. (Livingston)
8. Sheridan, Peter F. 1977. Trophic relationships in the dominant juvenile fishes in the Apalachicola Bay System. Ph.D. Dissertation, Florida State University. (Livingston)

INTRODUCTION

There is an established base of published information on the Apalachicola Bay System which will provide the background for this report. Most of the published data in the Apalachicola Drainage System (taken prior to this project) has been reviewed by Livingston et al. (1974). Methods of sampling, together with basic fluctuations of epibenthic fishes and invertebrates in the Apalachicola estuary have been outlined by Livingston (1976). The temporal progression of dominant epibenthic populations has been described by Livingston et at. (1976). The biological associations of this system have been analyzed with respect to biomonitoring procedures (Livingston, 1976) and specific responses of individual populations to key physico-chemical functions (Livingston et al, 1976). A complete list of species taken by various sampling procedures (including benthic infauna, detritus associated organisms, epibenthic fishes and invertebrates, etc.) has been published (Livingston et al., 1977). This includes analyses of major physico-chemical relationships, fluxes of detritus, and a comparison of the natural history of dominant populations of organisms in the Apalachicola estuary with that in other coastal systems of the Gulf of Mexico (Livingston et al., 1977). Livingston et al. (in press) have described long-term changes in pesticide levels and fish associations in the Apalachicola estuary. Myers and Iverson (1977) have described aspects of nutrient limitation of phytoplankton productivity in the Apalachicola estuary. Oesterling (1976, 1977) has indicated general patterns of blue crab migration and the spawning potential for this species in the Apalachicola Bay region. Supporting data concerning other biological associations in the entire Apalachicola Valley are also avaitable (Livingston and Joyce, 1977). Overall, there is a rapidly growing base of published information concerning the physico-chemical and biological relationships in the

Apalachicola Drainage System.
The published data have been supplemented by various unpublished studies and reports concerning a broad range of subjects relevent to the Apalachicola region. This includes the following documents:
"Survey: Chattahoochee-Flint-Apalachicola River System" (Florida State Board of Health, 1962)
"A management program for the oyster resource in Apalachicola Bay, Florida" (C.E. Rockwood et al., 1973)
"Strategy for change: an interim plan for the northwest Florida region" (RMBR Planning/Design group, 1973: for the Northwest Florida Development Council)
"Draft Environmental Statement. Lake Seminole and Jim Woodruff Lock and Dam, Alabama, Florida and Georgia. Operation and Maintenance." (U.S. Army Engineer District, Mobile, Alabama, 1975)
"Apalachicola River Basin Water Quality Management Plan" (Florida Department of Environmental Regulation, 1975)
"Field and laboratory studies concerning the effects of various pollutants on estuarine and coastal organisms with application to the management of the Apalachicola Bay System. (R. J. Livingston and N. P. Thompson: Final report for Florida Sea Grant, 1975)

"Progress Report for Florida Sea Grant: Energy Relationships and the Productivity of Apalachicola Bay." (R. J. Livingston, R. L. Iverson, and D. C. White: Florida State University, 1976)

"The Apalachicola River and Bay System, A Florida Resource" (Florida Department of Administration; Division of State Planning, 1976)
"Final Environmental Statement. Apalachicola-Chattahoochee, and Flint Rivers, Alabama, Florida, and Georgia (Operation and Maintenance)" (U.S. Army Engineer District, Mobile, Alabama, 1976)
"Proposal to Study the Apalachicola-Chattahoochee-Flint River System and Apalachicola Bay" (Northwest Florida Water Management District, 1976)
"A study on the effects of maintenance dredging on selected ecological parameters in the Gulf intracoastal waterway, Apalachicola Bay, Florida" (U.S. Army Engineer District, Mobile, Alabama)

According to the National Estuary Study (Vol. 3, Fish and Wildlife Service, U.S. Department of the Interior, 1970), the total area of the Apalachicola Bay System is $535,600,000 \mathrm{~m}^{2}$ (131,840 acres) of which 7% is occupied by submerged
vegetation ($38,106,000 \mathrm{~m}^{2}$ or 9,380 acres) and about 14% is emergent (marsh) vegetation ($85,000,000 \mathrm{~m}^{2}$ or 27,300 acres). Oyster beds account for about $24,374,840 \mathrm{~m}^{2}$ or 4.6% of the total bay (Rockwood et al., 1973). Mean depth approximates 2.7 m while the total volume is about $1,446,120,000 \mathrm{~m}^{3}$. This project was designed to study various aspects of the energy system in the Apalachicola Estuary. The following objectives were part of the program.

1. Determination of the river derived input of organic plant nutrients, and particulate and dissolved organic carbon into the bay system.
2. Analysis of phytoplankton assemblages and phytoplankton productivity of the Apalachicola Bay System.
3. Determination of the role of phytoplankton productivity in the overall energy budget of the bay, including nutrient limitation studies of key driving functions.
4. Analyses of the significance, source, and role of allochthonous and autochtonous forms of detritus in the Bay including a preliminary evaluation of the role of microorganisms in detrital breakdown and energy transfer.
5. Continuation of the application of scientific data for the development of a management program for the Apalachicola Drainage System.

As an outgrowth of the original program, a long-term impact analysis is being carried out to determine the potential influence of clearcutting practices in the Tate's Hell Swamp on the Apalachicola Bay System. Preliminary observations will be made concerning these data preparatory to the completion of the first stage of this project in December, 1977. In some instances, data analysis will be carried out within the context of the full 5-year data base which dates back to March, 1972.

This report represents a preliminary analysis of the data base. This will be followed by a more sophisticated review of the data base for publication in a series of scientific papers.

LITERATURE CITED

Livingston, R. J. 1976. Diurnal and seasonal fluctuations of estuarine organisms in a north Florida estuary: sampling strategy, community structure, and species diversity. Est. Coast. Mar. Sci. 4: 373-400. - 1976. Time as a factor in environmental sampling programs: diurnal and seasonal fluctuations of estuarine and coastal populations and communities. Invited paper. Symposium on the Biological Monitoring of Water Ecosystems (ed. J. Cairns, Jr.) ASTM STP 607: 212-234.

Livingston, R. J., R. L. Iverson, R. H. Estabrook, V. E. Keys, J. Taylor, Jr. 1974. Major features of the Apalachicola Bay System: Physiography, Biota, and Resource Management. Florida Sci. 37(4): 245-271.

Livingston, R. J., G. Kobylinski, F. G. Lewis, III, and P. Sheridan. 1976. Analysis of long-term fluctuations of estuarine fish and invertebrate populations in Apalachicola Bay. Fish. Bul1. 72(2): 311-32T.

Livingston, R. J. et al. (in press). The Biota of the Apalachicola Bay System: Functional Relationships. In, Proceedings of the Conference on the Apalachicola Drainage System. Florida Marine Research Publications, in press (eds. R. J. Livingston and E. A. Joyce, Jr.)

Livingston, R. J. (in press). Proceedings of the Conference on the Apalachicola Drainage System. Fla. Mar. Res. Publ., in press (eds. R. J. Livingston and E. A. Joyce, Jr.)

Myers, V. B. and R. L. Iverson. (in press). Aspects of Nutrient Limitation of Phytoplankton Productivity in the Apalachicola Bay System. In, Proceedings of the Conference on the Apalachicola Drainage System. Fla. Mar. Res. Publ., in press (eds. R. J. Livingston and E. A. Joyce, Jr.)

Oesterling, M. J. 1976. Reproduction, Growth, and Migration of Blue Crabs along Florida's Gulf Coast. Florida Sea Grant Publ. 19 pp.
Oesterling, M. J. and G. L. Evink. (in press). Relationship Between Florida's Blue Crab Population and Apalachicola Bay. In, Proceedings of the Conference on the Apalachicola Drainage System. Fla. Mar. Res. Publ., in press (eds. R. J. Livingston and E. A. Joyce, Jr.).

I. Data Storage

A. Physical-chemical data (by area, station, date, time of day, and depth)
. dissolved oxygen, cblor, turbidity, Secchi disk depth, temperature, salinity, pH , river flow, rainfall, bottom type
B. Fish and invertebrate data (by area, station, date, and time of day)

- genus and species, number of individuals, mean size (with standard deviation), biomass (ash free dry wet.), sex (invertebrates only)
C. Plant data (by area, station, date, and time of day)
- genus and species, total wet and dry weight, stems and roots (wet and dry weight), tops (wet and dry weight)
II. Data Processing
A. Retrieval
. for any area, station or group of stations, date or range of dates
B. Sorting
. by area, date, station, time of day, or any combination of these
biological data sorted by species
C. Calculation of biological indices (Based on numbers of individuals or biomass per species for any area, station or group of stations, date or range of dates, or time of day)
- Species Richness (Number of species, Margalef Index) Species diversity (Simpson Index, Brillouin Index, Shannon Index, McIntosh/indices, Hurlbert's E (S_{n})) Species equitability (Brillouin J, Shannon J')
D. Graphics (for any area, station or group of stations, range of dates, or time of day): plotted as a function of time.
- a\}1 physical chemical variables
- fish and invertebrates

1) number of individuals (single species or collective total)
2) average size
3) dry weight biomass (single species or collective total)
4) number of species

- plants

1) dry weight biomass(single species or collective total)
2) number of species
. any of the biological indices (see "C" above)
E. Statistics (for virtually any set(s) of numbers that can be generated by any other routine in the system)

- linear regression, Student's t-tests, nonparametric correlations, discriminant analysis, factor analysis, scattergrams, analysis of variance (one, two, and three-way), multivariate ANOVA, canonical correlation, etc.
* This portion of the report has been carried out with support from the U.S Environmental Protection Agency (number R-803339).
F. Cluster analysis
. cluster by species, station, or time
- total flexibility in how species, stations, and dates are grouped prior to analysis
- selection of similarity index from among Orloci's standard distance, product moment correlation, Fager, Jaccard, Sorenson's, Webb, Kenda11, Cyekanowski, Canberra metric, C-lambda, rho, and tau
- selection of clustering strategy from among unweighted pair group (grp avg), weighted pair (centroid) grouping, nearest neighbor grouping, furthest neighbor grouping, median grouping, and flexible grouping (with beta)
G. Dendrogram
. for any output from cluster analysis
. three scales available
H. Faunal summary (for any area, station or group of stations, range of dates, and times of day)
. number of individuals or dry weight biomass by species, month. and year
I. C-lambda (for any area, station or group of stations, date or range of dates, and times of day)
J. Mapping
- physical-chemical data, fish or invertebrate species population totals mapped for all stations in study areas (by month)
K. Data base update
. modification of any field in a data base record or records
- deletion of data records

Special Program for Ecological Science (SPECS): System Overview

I. Introduction

Long-term field studies in which diverse habitats are regularly sampled for a variety of organisms and physical-chemical factors are associated with the accumulation of large amounts of data. Organization and presentation of such data in a useful form has been alded significantly by modern high-speed computers.

At Florida State, we have designed and developed a computer software system specifically for use with long-term biological data. Primary design criteria have been storage of a large data base, retrieval of virtually any subset of the data, and rapid access to a diverse group of biological, statistical, and graphical data reduction and analysis capabilities.

The SPECS system has been written mostly in the FORTRAN programminng language. A few subroutines are written in the Control Data Corporation (CDC) COMPASS assembly language. SPECS operates on a CDC 6500 or CYBER 73 computer under the KRONOS operating system.
II. Organization of the System
A. Data Storage.

Field data on physical-chemical parameters and fish, invertebrate, and plant populations are assembled and punched on standard $80-c o l u m n$ cards. As the formats for each type of data are slightly different, a set of four card-deck programs have been developed to add raw data to a data base tape.

Two data base tapes are maintained, each with four files (one each for the four types of data). When a card-deck program is executed the old data base tape is read, the appropriate file is updated with raw data information, and all information is copied to the new data base tape (see figurel). For a subsequent addition of data, the data base tapes reverse roles. During addition of fish and invertebrate data, mean 'standard lengths, standard deviation of lengths, and dry weight biomass are calculated and added to the data base. For a repetitive samples data base figures represent sums of the overall samples.

Card-deck programs also copy raw data information to a raw data tape. This tape is thus a backup for all card information and is not in data base format.
B. Data Processing.

User Programs
Al1 user programs, precedure files (predefined sets of oft-used operating system commands), program libraries, and active data files reside on computer center disk packs (for rapid access). Most of the SPECS system is stored as a single file on one of these disks.
B. Data Processing. (continued)

This file contains one large program which has been structured in an overlay format. There is one main overlay and nine secondary overlays. Secondary overlays perform the majority of system functions, such as loading data, sorting, calculating biological indices, preparing for graphics and statistics, etc. The main overlay simply fields a SPECS system command and calls for the loading of a secondary overlay. Thus only two overlays are require in computer core storage at any one time - the main overlay and one of the secondary overlays.

Library Programs

The F.S.U. Computer Center program library contains many routines accessed by the SPECS system. Among these are the Statistical Package for Social Science (SPSS), the FSU plotting package, a mapping package (SYMAP), and a SORT/MERGE routine. The function of some SPECS secondary overlays is therefore to prepare data base information for input to these higher level routines.

III. Operation of the System

With the exception of programs in the data storage card decks, all programs in the system are designed to be operated from a remote teletype or CRT terminal. System operation is interactive in that there is twoway communication between the user and the program. The user guides the program through each step of analysis by entering commands or other information in response to questions displayed by the program.

A. Terminal session.

A terminal session with the SPECS system begins with a user call of the INIT (initiate) procedure file. This procedure first asks the user for the location of the data to be used in this run(possibly a data base tape or an active data file). It then gets the SPECS program and initiates its execution.

The main overlay of SPECS writes a "COMMAND?" message to the terminal screen. In response the user enters a SPECS system command. The LOAD (retrieve) and SORT commands are usied to create an active data file from a data base tape. If the user began this run with an active data file (created in a previous run), the LOAD and SORT commands are not needed. Once an active data file is available for use the user setects from among a group of commands that initiate execution of secondary overlays which perform analyses of active data. A summary of these commands and the operations performed is presented in Table 1.

Following execution of a secondary overlay, the main overlay is calledand the "COMMAND?" message is again printed at the terminal. At this point the user may wish to load more data (create an additional active data file), request another type of analysis on the same data file, or terminate SPECS system operation. When system operation is
ended file disposition is under user control. Printer output files created during SPECS operation may be listed on a line printer. Active data files or other intermediate files may be saved if they will be used again in the near future. This is especially valuable if an important file has taken a long time to generate (that time need not be invested again, for the file may be kept indefinitely).

This allows a person with limited computer background to use an interactive computer system with immediate access to a broadbased data file containing diverse forms of information. Using the various options, this facilitates a rapid, relatively inexpensive yet comprehensive analysis with great flexibility regarding access to data and forms of analysis. All operations are carried out at the terminal, and new options can be added easily in addition to routine periodic updates of the data base. This gives the biologist the use of a sophisticated computerized software system as a research tool.

IV.

SUMMARY
The SPECS system consists of a collection of programs written expressly for the storage, retrieval, and analysis of long-term ecological data. It provides a wide range of analytic approaches and data reduction capabilities. Some programs perform direct calculations or data manipulations while others serve as interface programs which prepare data for higher level (and widely available) program packages.

The system is operated from a remote computer terminal or teletype, from which the user supervises program execution in a step-by-step manner. Operation is interactive in that the program prompts the user for informational input required before each step is executed. Output consists of terminal display, printed listing, and electrostatic plots. Theorizing(the fun part) is left to the user.
Table 1 - Surmary of SPECS commands and functions of corresponding secondary overlays

Command	Overtay function
LOAD	Forms active data file by retrieving data by data base file, area, station (or group of stations, and date (or range of dates)
SORT	Sorts active data file by area, date, station, and time of day (amd species, if biotogical data)
CALC	Computes ten separate diversity, evenness, and richness indices for every combination of area, station, date, and time of day present in active data file. Output written to file suitable for printing.
GRAPH	Prepares for time-based plots of virtually any subset of data base information. Requested data is extracted from active data file. A procedure file is called which executes a graphics interface program (prepares data for FSU Plotting package), then executes the plotting package. Output may be displayed on terminal screen or plotted on a Gould electrostatic plotter.
SPSS	Extracts requested data from active data file, prepares on SPSS control card file, and executes SPSS (via a procedure file). Output placed on a file suitable for printing.
CLJST	Performs cluster analysis on data in active date file. User selects from 10 similarity indices and 6 clustering strategies. Clusters are based on species, stations, and time. Any one or all may be collapsed to any desired degree, allowing great flexibility in grouping of data prior to analysis. Output is on two files, one for printing and one for input to dendrogram program.
DEHDO	Cal]s procedwre fite which executes demdrogram drawing program.
SIJMRY	Prepares time-based summaries of fish or invertebrate data in active data file. For each species, monthly and yearly catch (and per cent of total catch) are suitable for printing. presented for number of individuals or dry weight biomass. Output on file
$C L A M B$	Computes the C-Tambda faunal affinity index for combinations of stations and dates found in the active data file. Output on file suitable for printing.
UPDAT	Provides for user editing of a data base file. User enters commands to modify or delete data base records when error conditions require correction.

Figure 1 - SPECS Data Storage Procedure

III. Biomass transformations

Because of the volume and diversity of field collections in this and other Bay systems (i.e., Apalachee Bay, the Econfina and Fenholloway drainage systems) presently under study by our group, the method of analysis for biomass determinations was standardized for each species. This allowed the computerized conversion of number/length data into dry weight or ash-free dry weight figures after a detemination of a regression fommula based on empirical information. Whenever possible, various individuals for a given species (representing a normal range of size variation) were counted, measured, and weighed for such analysis. Species which did not have any real variation in size were simply counted and weighed for a computation of mean weight per individual. Those species which were too rare for such analysis were assigned figures from the more common species. Species pairing was achieved subjectively based on configurational and/or taxonomic similarity.

In this way, a regression equation or a conversion factor (based on weight per individual) was computed for each species taken in the survey. A biomass file was then constructed by species based on length/frequency data. This file was used for all operations having to do with biomass figures. Methods and Materials

All specimens used in the weight conversion study were taken fresh (on ice) to the laboratory for analysis. Standard lengths, together with wet and dry weights, were measured for all fish specimens. Various invertebrate species were measured for total length, (tip of the telson to tip of the rostrum, shrimp; carapace width, crabs) wet, dry and ash-free dry weight. For those invertebrates normally counted in our data base (worms, mollusks,
amphipods, isopods, etc.), onty mean ash-free dry weights were determined per species.

Dry weights were obtained by oven-drying samples for 48 hours at $105^{\circ} \mathrm{C}$. Ash-free dry weights were obtained by ignition of the specimens in a muffle furnace for 1 hour at $550^{\circ} \mathrm{C}$. Preliminary samples indicated less than 1% error was introduced by reducing the ignition time from the reconmended 3 hours (Cummins and Waycheck, 1971) to 1 hour.

Linear regression equations utilizing a $\log -\log$ (natural logs) transformation were calculated for each species where data were available (Table l). These were caiculated according to the following general equation;

```
    ln (weight*) = ln (length**) a-b
        where a&b = regression coefficients
    * weight = dry weight (fishes)
            = ash free dry weight (invertebrates)
** length = standard length (fishes)
            = total or carapace width (invertebrates)
```

For those invertebrate species where no length or width measurements were taken a representative grouping according to size was dried and/or ashed; a single mean weight per individual was given for that species. For those species collected so rarely that no length-weight relationship could be established, regression equations or average weights of similar species (similar body shape, size, etc.) were substituted. These equations are also included in Table 1 along with the type species.

Literature cited:
Cummins, K.W. and J.C. Waycheck. (3971). Caloric equivalents for investigations in ecological energetics. Mitt. Internat. Verein. Limnol. No. 18, 158 pp.

Table 1. Biomass regression and conversion figures for organisms taken in Apalachicola Bay and Apalachee Bay from 1972 to 1976
A. Fishes, regression analysis by species (ln dry wt. = a. In standard length -b)

Species	\# of individuals	regression equation
ALU SCH	11	$=3.40541(x)-14.97588$
ANC LYO	4	$=4.05558(x)-17.13343$
ANC MIT	209	$=2.92631(x)-12.60137$
ANG ROS	6	$=3.21520(X)-15.84540$
ARI FEL	30	$=3.24073(x)-13.56112$
AST GRA	6	$=2.31036(x)-9.11249$
BAG MAR	8	$=3.49714(x)-14.94788$
BAI CHR	284	$=2.90410(X)-11.76128$
BRE PAT	10	$=5.33190(x)-20.55185$
CAL ARC	13	$=3.08486(x)-12.23879$
CEN MEL	115	$=2.95025(x)=11.85323$
CHA FAB	4	$=3.36763(x)-12.66714$
CHA SAB	8	$=2.27591(x)-10.00217$
CHI SCH	51	$=2.69654(X)-9.69103$
CHL CHR	12	$=2.46994(x)-10.40515$
CYN ARE	29	$=2.85506(x)-12.09550$
CYN NEB	47	$=3.05722(x)-12.79894$
DAS SAB	12	$=3.17554(X)-12.61179$
DIP HOL	63	$=3.43800(x)-13.50773$
DOR CEP	4	$=3.69685(x)-15.64947$
DOR PET	6	$=3.46547(X)-14.19044$
ETR CRO	17	$=2.99338(X)-12.30726$
EUC ARG	35	$=3.40790(x)-13.88700$
EUC GUL	17	$=2.64359(x)-10.80122$
GOB BOS	14	$=2.81134(x)-11.66922$
GOB ROB	13	$=2.99185(x)-12.17209$
HAE PLU	31	$=2.82564(x)-11.39730$
HAR PEN	(DOR PET)	$=3.46547(x)-14.19044$
HIP SPE	5 (${ }^{\text {a }}$	$=2.82587(x)-11.96161$
ICT CAT	8	$=3.02830(X)-12.31003$
ICT PUN	4	$=3.91137(x)-16.83136$
LAC MAX	4	$=4.25871(X)-17.00627$
LAC QUA	15	$=2.34179(x)-8.20714$
LAG RHO	573	$=3.24457(X)-12.94101$
LEI XAN	77	$=3.15892(x)-12.81603$
LEP OSS	8	$=3.28379(x)-15.53650$
MEN AME	18	$=2.93110(x)-12.15889$
MEN BER	2	$=1.33401(X)-5.79181$
MIC CRI	14	$=3.42472(X)-17.69587$

Species	\# of individuals	regression equation
MIC GIUL	22	$=3.15783(x)-13.17557$
MIC UND	174	$=3.30722(x)-13.59050$
MON CIL	115	$=2.68766(x)=11.00337$
MON HIS	86	$=2.76823(X)-11.04164$
MUG CEP	7	$=3.04576(X)-12.49192$
NIC UST	10	$=3.28415(x)-13.28714$
OGC RAD	2	$=3.91484(x)-16.05968$
OPS BET	27	$=2.51062(x)=10.34034$
ORT CHR	99	$=3.08003(x)=12.54686$
PAR ALB	26	$=3.13787(x)-13.23092$
PAR FAS	14	$=3.68192(x)-15.60141$
PAR LET	33	$=3.06070(x)-12.73843$
PEP BUR	5	$=2.63529(x)-10.45042$
POG CRO	2	$=2.46761(x)=9.21713$
POR POR	3	$=3.27791(X)-14.04788$
PRI SCI	4	$=3.26012(X)-13.36732$
PRI TRI	20	$=3.07717(x)-12.21250$
SPH GUA	7	$=2.76380(x)-12.47892$
SPH NEP	24	$=2.82279(X)=10.95111$
STR MAR	4	$=3.42754(x)=16.83563$
SYM PLA	14	$=3.19256(X)-13.76772$
SYN FLO	58	$=3.39967$ (x) - 17.79450
SYN FOE	21	$=3.33944(X)-14.67424$
SYN SCO	10	$=4.20130(x)-21.00771$
TRI MAC	30	$=3.35751(x)-13.05926$
URO FLO	33	$=3.35273(x)-14.52737$
CYP VAR	6	$=3.49504(x)-13.50708$
FUN GRA	6	$=3.11153(x)=12.77763$
FUN SIM	3	$=3.53472(x)-14.48805$
LEP MAC	10	$=3.19176(x)-12.50672$
LUC PAR	5	$=3.51483(x)-13.99182$
MIC SAL	4	$=3.87904(x)-15.92254$
NOT PET	7	$=2.66732(x)=11.73939$
POE LAT	3	$=2.19844(X)-9.12226$

B. Fishes (rare), assigned regression equations

Species	comparable species	regression equation
ADI XEZ	LUC PAR	$=3.51483(x)-13.99182$
GAM AFF	LUC PAR	$=3.51483(X)-13.99182$
NOT VEN	NOT PET	$=2.66732(x)-11.73939$
FUN CON	FUN GRA	$=3.11153(X)=12.77763$
LEP MIC	LEP MAC	$=3.19176(x)-12.50672$
SYN LOU	SYN FLO	$=3.39967$ (X) - 17.79450
DIP FOR	CEN MEL	$=2.95025(x)-11.85323$
GYN NIG	ANG ROS	$=3.21520(x)-15.84540$
HYP HEN	CHA SAB	$=2.27591(x)-10.00217$
MEN SAX	MEN AME	$=2.93110(X)-12.15889$
HAE AUR	HAE PLU	$=2.82564(x)-11.39730$
LUT GRI	ORT CHR	$=3.08003(X)-12.54686$
ANC HEP	ANC MIT	$=2.92631(x)-12.60137$
PAR MAR	PAR FAS	$=3.68192(\mathrm{X})-15.60141$

Species	comparable species	regression equation
SEL VOM	CHL CHR	$=2.46994(X)-10.40515$
POL OCT	BAI CHR	$=2.90410(x)-11.76128$
SCI OCE	MIC UND	$=3.30722(x)-13.59050$
ANC QUA	PAR ALB	$=3.13787(x)-13.23090$
HYP GEM	CHA SAB	$=2.27591(x)-10.00217$
CAR HIP	CHL CHR	$=2.46994(x)-10.40575$
HAE SPE	HAE PLU	$=2.82564(x)-11.39730$
HIP ERE	HIP SPE	$=2.82587(x)-11.96161$
HIP ZOS	HIS SPE	$=2.82587(x)-11.96161$
SPH BAR	SPH GUA	$=2.76380(x)-12.47892$
SPH BOR	SPH GUA	$=2.76380(x)-12.47892$
SER SUB	CEN MEL	$=2.95025(x)-11.85323$
MEN SPE	MEN AME	$=2.93110(x)=12.15889$
EUC. SPE	EUC ARG	$=3.40790(x)-13.8870$
OPH BEA	URO FLO	$=3.35273(x)-14.52737$
SCO BRA	CEN MEL	$=2.95025(x)-11.85323$
MYC MIC	CEN MEL	$=2.95025(x)-11.85323$
MUL AUR	MIC UND	$=3.30722(x)-13.59050$
CLU SPE	BRE PAT	$=5.33190(x)-20.55185$
OPH GOM	ANG ROS	$=3.21520(x)-15.84540$
BAT SOP	GOB BOS	$=2.81134(x)-11.66922$
GOB STR	GOB BOS	$=2.81134(x)-11.66922$
LAB SIC	MEN BER	$=1.33401(x)-5.79181$
ECH NAU	ARI FEL	$=3.24073(x)-13.56112$
RAJ TEX	DAS SAB	$=3.17554(\mathrm{X})-12.61179$
STE CAP	DIP HOL	$=3.4380$ (X$)-13.50773$
HEM BRA	STR MAR	$=3.42754(X)-16.83563$
TRA CAR	CHL CHR	$=2.46994(X)-10.40515$
GOB BOL	MIC GUL	$=3.15783(x)-13.17557$
SAR ANC	ANC MIT	$=2.92631(X)-12.60137$
HAL BIV	NIC UST	$=3.28415(x)-13.28714$
SER PUM	CEN MEL	$=2.95025(X)-11.85323$
ELO SAU	SPH GUA	$=2.76380(X)-12.47892$
SCA SPE	NIC UST	$=3.28415(X)-13.28714$
ARC PRO	LAG RH0	$=3.24457(x)-12.94101$
APO TOW	BAI CHR	$=2.90410(X)-11.76128$
AST STE	BAI CHR	$=2.90410(x)-11.76128$
MIC THA	MIC GUL	$=3.15783(x)-13.17557$
STE LAN	PEP BUR	$=2.63529(x)-10.45042$
GOB HAS	(MIC GUL + GOB HAS)	$=2.90410(x)-11.76128$ $=2.83401(x)-11.90954$
MUG SPE	MUG CEP	$=3.04576(x)=12.49192$
MYR PUN	ANG ROS	$=3.21510(x)-15.84540$
ALO ALA	DOR CEP	$=3.69685(x)-15.64947$
OLI SAU	CHL CHR	$=2.46994(X)-10.40515$
RHI BON	DAS SAB	$=3.17554(x)-12.61179$
MON CHR	BAI CHR	$=2.90410(x)-11.76128$
ANC SPE	ANC MIT	$=2.92631(x)-12.60137$
SYN SPE	SYN FLO	$=3.39967(x)=17.79450$
POM SAL	LAG RHO	$=3.24457(x)-12.94101$
CAR BAR	CHL CHR	$=2.46994(x)-10.40515$
SPH TIB	BAG MAR	$=3.49714(x)-14.94788$

Species	comparable species	regression equation
mug cug	MUG CEP	$=3.04576(x)-12.49192$
PRI RUB	PRI TRI	$=3.07717(x)-12.21250$
PAR SPE	FAR LET	$=3.06070(x)-12.73843$
GYM MIC	DAS SAB	$=3.17554(x)-12.61179$
CYN SPE	CYN ARE	$=2.85506(x)-12.09550$
LOB SUR	CHA FAB	$=3.36763(x)-12.66714$

C. Invertebrates, regression analysis by species.

Species	\# of individuals	regression equation
ALP HET	22	$=2.75501(x)-11.52437$
CAL SAP	49	$=2.67979(x)-10.51993$
LIB DUB	15	$=2.51633(x)-8.99184$
NEO TEX	49	$=2.64410(x)-9.04336$
PAL FLO	14	$=2.51735(x)-11.73789$
PAL INT	8	$=3.29106(x)-14.03450$
PEN DU0	50	$=3.18888(x)=14.31392$
PEN SET	62	$=2.75088(x)-12.56506$
PER AME	9	$=1.70501(x)-9.43702$
TOZ CAR	10	$=3.77633(x)-18.02926$
MET CAL		$=2.05252(x)-7.31573$
PAL PUG		$=3.23535(x)-14.16662$

D. Invertebrates, calculated conversion coefficients per individual based on narrow range of length frequency data.

Species mean ash free dry wt.
PER LON 0.0036 (gu)
THO DOB . 0032
HIP ZOS . 0022
PET ARM . 0431
PAG BON . 0067
PAG LON . 1468
LOL BRE .6788
LYT VAR 3.2713
ECH SPE . . 6914
ECH PAR . 2050
OPH BRE . 0360
E. Invertebrates, assigned regression equations or weight/individual.

Species	comparable species	$\frac{\text { regression equation or mean }}{\text { ash free }}$
PEN AZT	PEN DUO	$=3.18888(x)-14.31392$
POR GIB	CAL SAP	$=2.67979(x)-10.51993$
CAL SIM	CAL SAP	$=2.67979(x)-10.51993$
TRA CON	PEN SET	$=2.75088(x)-12.56506$

LAE MOR	Small RAN CUN	.5066
STR ALA	AEQ IRR	2.1975
CRE FOR	CRE PLA	$(.0002)$
PSE FLO		$(.0031)$
TRA EGM	small RAN CUN	.5066
BUR LEA		2.0000
APL FLO		2.0000
BRA AME	large chaetes	.0100
DIO CUP		.0100
PLA DUM		.0100
PAR CAU		$(.0030)$
CLE PLA		$(.0030)$

* Those figures in parentheses represent weights of juveniles of a given species

Species	comparable species	regression equation or mean
		ash free dry wt.
LEA TEN	PAL FLO	$=2.51735(x)-11.73789$
SYN TON	ALP HET	$=2.75501(x)-17.52437$
SYN LON	ALP HET	$=2.75501(x)-11.52437$
UCA SPE	NEO TEX	$=2.64410(x)-9.04336$
LIB EMA	LIB DUB	$=2.51633(X)-8.99184$
SES CIN	NEO TEX	$=2.64410(X)-9.04336$
PAG ANN	PAG LON	$=.1468$
PRO SPE	PEN DUO	$=3.18888$ (X) - 14.31392
AMB SYM	PAL INT	$=3.29106(X)-14.03450$
SIC DOR	PEN DUO	$=3.18888(x)-14.31392$
SIC BRE	PEN DUO	$=3.18888(X)-14.31392$
SIC TYP	PEN DUO	$=3.18888(X)-14.31392$
SIC LAE	PEN DUO	$=3.18888(x)-14.31392$
POD RLL	LIB DUB	$=2.51633(X)-8.99184$
EPI DIL	LIB DUB	$=.0306$
PEL MUT	LIB DUB	$=.0306$
PIT ANI	LIB DUB	$=2.51633(x)-8.99184$
MEG SOR	PET ARM	$=.0282$
POR SIG	PET ARM	$=.0282$
MAC CAM	LIB DUB	$=2.51633(x)-8.99184$
SQU EMP	PEN DUO	$=3.1888(X)-14.31392$
URO PER	CAL JAM	$=.0111$
CAL JAM	CAL JAM	$=.0111$
LUI CLA	3 (ECH SPE)	$=2.0742$
HEM ELO	OPH BRE	$=.0360$
OPH ANG	OPH BRE	$=.0360$
LUI SAG	ECH SPE	$=.6914$
LUI SPE	ECH SPE	$=.6914$
LUI ALT	ECH SPE	$=.6914$
OPH ELE	OPH BRE	$=.0360$
OCT VUL	2 (LOL BRE)	$=1.3576$

IV. Physico-chemical Relationships: Sedimentology and Habitat Structure

Livingston et al. (1975) showed that the aquatic environment in the Apalachicola Estuary is affected to a considerable degree by seasonallydirected fluctuations of the Apalachicola River. Variables such as local rainfall, tides, wind-induced currents, temperature, salinity, dissolved oxygen, turbidity, color, and pH , are important determinants of the population and community structure of this bay system; together, these parameters define the array of habitats in the area.

The sediments determine to a considerable degree the forms of benthic organisms which occur in a given area. This is particularly true of the benthic infauna, where feeding types are often correlated with sediment forms. This includes direct sedimentary control of trophic distribution (Sanders, 1958), coincidental correlation between water movement factors and trophic distribution (Sanders, 1958; McNulty et al., 1962), and trophic group amensalism mediated by the sediments (Rhoads and Young, 1970). Support for these observations is available (Bloom et al., 1972). Thus, sediment analysis was conducted concurrently with the analysis of the infauna of the Apalachicola Estuary.

Materials and Methods:

Sediment Analysis
Sediment samples were taken with a corer (d., 7.62 cm) monthly from March, 1975 through February, 1976. This was carried out at fixed stations around the bay (Fig. 1). These analyses were conducted on the top $5-10 \mathrm{~cm}$ of each core.

Two methods were used (the second method represents a standard geological analysis which eliminates biological functions). At monthly intervals, a sample of $50-150 \mathrm{~g}$ was wet-sieved through a series of U.S. Standard sieves. Each fraction was dried at $100^{\circ} \mathrm{C}$ for 24 hours and weighed. Sieve-class weights were then used to construct cumulative percent particle size curves (Inman, 1952) on arithmetic probability paper. A second analysis involved a supplementary subset of the above samples (Ingram, 197l). A $30-50 \mathrm{~g}$ sample was dried at $100^{\circ} \mathrm{C}$ for 24 hours and then treated with $10 \% \mathrm{HCl}$ for 12 hours to remove carbonates. After redrying the sample, organic matter was removed by treatment with 30% for 12 hours. The sample was then dried, and dry-sieved through a series of sieves on a mechanical shaker for 30 minutes. Sieve class weights were analyzed by the method of moments (Folk, 1966) using a computer program developed by J. P. May (Dept. of Geology, Florida State University). Sediment organic matter was analyzed monthly by drying a subsample at $100^{\circ} \mathrm{C}$ for 24 hours and ashing at $500^{\circ} \mathrm{C}$ for 4 hours (Cummings and Waycheck, 1971).

Physico-chemical Functions:

Surface and bottom water samples were taken monthly at fixed stations in the Apalachicola Estuary (Fig. 1) with a 1 \& Kemmerer bottle. Dissolved oxygen and temperature were measured with a Y.S.I. dissolved oxygen meter and a stick themometer. Salinity was taken with a temperature-compensated refractometer calibrated periodically with standard sea water. River flow data taken at Blountstown, Florida were provided by the U.S. Army Corps of Engineers (Mobile, Alabama) while local rainfall data were provided by the National Oceanic and Atmospheric Administration (Environmental Data Service,

Apalachicola, Florida) and the East Bay Forestry tower. Turbidity was determined using a Hach Model 2100-A turbidimeter and was expressed as Jackson Turbidity Units (J.T.U.). Water color was measured using an A.P.H.A. platinum-cobalt standard test. Light penetration was estimated with a standard Secchi disk. Data concerning chlorophyll A, orthophosphate (inorganic, soluble, reactive), nitrite, nitrate, and silicate were provided through a Florida Sea Grant Program directed by Dr. Richard L. Iverson (Department of Oceanography, Florida State University); these parameters were measured according to standard procedures (Livingston et al., 1974).

A. Sediments:

Results of sediment analyses are presented in Table 1.

Station 1

This is a mid-bay station approximately $2 m$ in depth. The bottom is somewhat loose, barren of vegetation, with occasional large wood and shell fragments. There are scattered coarse, sandy deposits in an otherwise fine sand area. The monthly average grain size is 2.60ϕ units and contains 6.52% organic matter. There was considerable variation between samples both for grain size and organic content, with no obvious trends. The concurrent decrease in grain size and increase in organic content noted in February, 1976, coincided with maintenance dredging activities nearby. Station IX

This station is situated in a shallow (1 m) protected grass bed, composed mainly of Halodule wrightij. The bottom is very firm sand with scattered oyster bars in the area. The average monthly grain size is 2.02ϕ units and the organic content averages 2.06%. There was a little
between-sample variation in grain size but the sediment organic content increased from July to January, coinciding with the die-off and deposition of Halodule blades.

Station 3

This station is located in a shallow (1 m) channel leading from the Apalachicola River into East Bay. Winter and spring deposits of wood and leaf debris, washed in by peak river discharges, are found in this area. The bottom is firm, fine sand with beds of Ruppia maritima and Vallisneria americana in the vicinity. The average grain size is 2.83ϕ units and organic content averages 3.52%. There was some variability between samples for grain size and organic content, probably resulting from the riverdeposited debris.

Station 6
This station is located in the middle of a shallow (1 m), protected embayment close to the Apalachicola River with seasonally dense beds of Ruppia nearby. The bottom is a loose, fine sand-silt. Woody debris was almost always noted in the samples. The monthly average grain size is 3.64ϕ units and organic content averages 5.60%. Samples were variable with respect to grain size and organic content, with no trends observed. Station 4

This station is moderately deep (2 m) and influenced to some extent by river discharge. The bottom is barren, loose silty-sand, and contains large wood fragments. The monthly average grain size is 3.93ϕ units and organic content averages 7.98%. Grain sizes were somewhat variable in the spring (perhaps due to river effects) and appeared stable for the rest of the year. Organic content was highest in summer and fall, coinciding to
some extent with the die-off of upper bay grass beds.

Station 4A

This station is in a shallow (4 m) Vallisneria bed in upper East Bay. The bottom is fairly loose, silty-sand. The monthly average grain size is 3.98 units and organic content averages 8.61%. A fall peak in organic content probably results from the die-off of Vallisneria blades.

Station 5A

This station is located off a sandy beach in upper East Bay. The bottom is firm, fairly coarse sand, and the nearby shore is fringed with Vallisneria. The average grain size is 1.82ϕ units and organic content averages 2.58\%. Between-sample variation in grain size is low, but organic content increases from summer through winter, to some extent due to the Vallisneria die-off.

Station 5B
This station is located in an upper East Bay tributary. The bottom is loose silt with Vallisneria fringing the shoreline. The average grain size is 4.22ϕ units and organic content averages 11.23%. Grain sizes exhibited low variability as did organic content, which was relatively high all year.

In summary, grain size decreases and organic content increases moving from the outer Apalchicola Bay into the upper reaches of East Bay. The observed late summer-fall die-off of benthic macrophytes coincides generally with an increase in sediment organic content. The relationships between the above observations and the reactions of the infaunal and epibenthic organisms to both general sedimentary characteristics and the fall increase in organic content will be examined in other sections of this report.
B.

Physico-chemical parameters:
Water temperatures at a representative station are shown in Figs. 2 and 3. Although temperature peaks tended to remain stable from year to year, there was a general decrease in temperature with time which was particularly pronounced during the fifth year of the study. The winter of 1976-77 was extremely cold, and this should be taken into consideration in any long-term evaluation of the biota of the bay. There was a general reduction in salinity (Figs. 4-7) with time. Seasonal variation, based to a considerable degree on river flow (Fig. 30), was a major determinant of the salinity regimes in the system. There were also decreases in salinity during summer and fall months which appeared to reflect surface runoff from local rainfall patterns. Such changes were more pronounced in East Bay than Apalachicola Bay. The general salinity pattern was thus relatively stable from year to year. Low salinities occurred during winter and spring months (associated with river flow) followed by increasing salinity during the summer. There was then a rapid decline in the late summer or fall, (coincident with increased local precipitation) and this was followed by a fall or winter salinity peak just prior to the ensuing decrease in salinity with renewed increases in river flow. The general annual patterns of salinity (Figs. 4-7), with relatively low levels during the past 3 years, may not be entirely consistent with the mean annual river flow and rainfall data (Table 2). This is especially true during the last year of sampling. This will be the subject of further study involving mass flow models.

Color values for representative stations in the Apalachicola Estuary are shown in Figs. 8-17. The influence of the major river flooding during
the winter of 1973 (Fig. 30) is apparent throughout the bay. A secondary peak appears during the spring of 1975. On the whole, there was a general decrease in color at Station 1; this was especially significant at greater depths. The reverse was true in East Bay, especially at the surface. Spikes of high water color were particular pronounced during the latter part of 1974. Peaks generally occurred during spring and late summer, thus reflecting rainfall patterns (Fig. 30) during this period. East Bay was thus more highly colored than Apalachicola Bay, and showed a trend which appeared to be linked to patterns of local rainfall and runoff in the Tate's Hell Swamp area. This was not the case with respect to turbidity which tended to decrease during the study period in the bay as a whole. Turbidity seemed to be closely correlated with river flow. Turbidity peaks usually occurred during winter and spring months. One notable exception to this occurred during the summer of 1974 in benthic areas of East Bay. These trends in color and turbidity were generally reflected in the Secchi disk data (Figs. 16, 17) where significant decreases occurred in East Bay with time relative to the Apalachicola Bay area.

Dissolved oxygen data are shown in Figs. 18-21. There was considerable seasonal variation at both stations with peak levels generally occurring during winter and spring months indicating the usual relationship with water temperature and salinity. In East Bay, there was a significant increase in dissolved oxygen during the 5 year period of study which was not as apparent in Apalachicola Bay. Relatively low levels of dissolved oxygen were apparent in East Bay during the late summer of 1974. Levels of pH in the Apalachicola Estuary are shown in Figs. 22-25. There was a significant decrease in pH in Apalachicola Bay during the fall and early
winter of 1976. This remains unexplained at this time. The East Bay data will be more thoroughly reviewed in another report involving potential impact of clearcutting on the Bay.

Orthophosphate and nitrate levels in the Apalachicola Estuary are shown in Figs. 26-29. These data will be analyzed in detail by Iverson and Myers (Section V of this report).

Analysis and Discussion:
A statistical treatment was carried out with the first four years of physico-chemical data. The seasonal changes in various physico-chemical variables in the Apalachicola Bay System have already been described (Livingston, 1974, 1976; Livingston et al., 1974a: Livingston et al., 1976) and will not be reviewed in detail here. Overall, this is a shallow barrier island estuary dominated physically by the widely fluctuating Apalachicola River (Fig. 30). During the 4 -year period of study, the river flow usually peaked during the period from January to April. At these times, the range of extreme diurnal flows usually was maximal. The range and mean flow usually reached low levels during late summer and fall periods. This pattern was almost completely out of phase with local rainfall which ordinarily peaked during the summer and early fall. There was considerable annual variation of river flow with relatively low levels during the first and third years of sampling. During the winter and spring of 1973, there was especially pronounced river flow and flooding throughout the Apalachicola Valley.

Water temperature followed seasonal patterns with no substantial variation from year to year. At any given time, there was usually little vertical or horizontal variation in water temperature throughout the bay
system (Livingston et al., 1977). River flow generally dominated the seasonal characteristics of parameters such as salinity, color, turbidity, and nutrient levels with increased flow associated with increases in the latter 3 functions. Generally, this is a highly turbid bay with considerable oyster bar development and little benthic macrophyte productivity except in shallow (fringing) areas. Tides in the Apalachicola Estuary are semi-diurnal (mixed, unsymmetrical) with a small small range (up to 1 m). Winds in the area follow no clear directional trend although during fall and winter there is a northerly flow which becomes southerly during the rest of the year. In June, 1972, Hurricane Agnes came ashore near the Apalachicola region with winds gusting to 55 knots and tides around 2 m above the norm.

Statistical analysis of the physico-chemical data taken over the 4 -year study period included simple linear regression and correlation for distribution with time. Significant changes in the regressions (original and $\log _{e}$ units) were found for salinity, rainfall, and turbidity. The results of a 2-way (month x year) analysis of variance of these data are shown in Table 3. Since in a 2-way analysis with one observation per cell, the mean square is of necessity used as an error term, the occurrence of annually high significance levels probably indicates that considerable interaction exists. There was significant ($p<.05$) annual variation of river flow although no trend was apparent during the study period. There were reductions in salinity and turbidity in the Apalachicola system with time. The results of a factor analysis (Table 4) indicate that high riverflow is usually associated with increased color and turbidity and reduced Secchi readings, and low levels of salinity, temperature, and
chlorophyll A. This is consistent with the known seasonal pattern of these factors, and indicates the important influence of the Apalachicola River on the physical environment of the Apalachicola Estuary. While the river dominates the seasonal fluctuations of parameters such as salinity, long-term changes in the overall salinity of the bay appear to be related also to other functions such as local rainfall and runoff. This would indicate that causation reflects multiple interactions thus allowing apparently contradictory results in the short- versus long-term trends (e.g., turbidity and salinity relationships).

Literature Cited

Bloom, S.A., J.L. Simon, and V.D. Hunter. 1972. Animal-sediment relations and community analysis of a Florida estuary. Mar. Biol. 13, 43-56.

Cummins, K.W. and J.C.Waycheck. 1971. Caloric equivalents for investigations in ecological energetics. Mitt. Internat. Verein. Limnol. No. 18. 158 p.

Folk, R.L. 1966. A review of grain-size parameters. Sedimentology 6, 73-93.
Folk, R.L. and W.C. Ward. 1957. Biagos River bar: a study in the significance of grain size parameters. U. Sedim. Petrol. 27, 3-26.

Ingram, R.L. 1971. Sieve analysis.in R.E. Caever (ed.), Procedures in Sedimentary Petroiogy. Wiley - Interscience, New York. pp. 49-67.

Inman, D.L. 1952. Measures for describing the size distribution of sediments. $\underline{\text { J. Sedim. Petrol. }}$ 22: 125-145.

Livingston R.J.: Field and laboratory studies concerning the effects of various pollutants on estuarine and coastal organisms with application to the management of the Apalachicola Bay System (North Florida, U.S.A. Final Report, State University Systems of Florida. Sea Grant SUSFSG-04-3-158-43) (unpublished, 1974).

- Impact of kraft pulp-mill effluents on estuarine and coastal fishes in Apalachee Bay, Florida, U.S.A. Mar. Biol. 32, 19-48 (1975).
- Diurnal and seasonal fluctuations of estuarine organisms in a North Florida estuary. Est. Coastal Mar. Sci. 4, 323-400 (1976a)
- Dynamics of organochlorine pesticides in estuarine systems: Effects on estuarine biota. Proc. Third International Est. Conf. (1976b)
- R.L. Iverson, R.H. Estabrook, V.E. Keys and J. Taylor, Jr.: Major
features of the Apalachicola Bay system: physiology, biota, and resource management. Florida Sci. 37(4), 245-271 (1974a).
- G.J. Kobylinski, F.G. Lewis, III and P.F. Sheridan: Long-term fluctuations of epibenthic fish and invertebrate populations in Apalachicola Bay, Florida. Fish Bul1. 74, 311-321 (1976).
- P.F. Sheridan, B.G. McLane, F.G. Lewis, III and G.G. Kobylinski: The biota of the Apalachicola Bay System: functional relationships. In: Proceedings of the Conference on the Apalachicola Drainage Systen. Eds. R.J. Livingston and E.A. Joyce, Jr. (in press, 1977).

McNulty, J.K., R.C. Work, and H.B. Moore. 1962. Some relationships between the infauna of the level bottom and the sediment in South Florida. Bull. Mar. Sci. Gulf. Caribb. 12: 322-332.

Rhoads, D.C. and D.K. Young. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. Mar. Res. 28: 150-177.

Sanders, H.L. 1958. Benthic studies in Buzzard's Bay. I. Animal-sediment relationships. Limnol. Oceanogr. 3: 245-258.

31.

Table 1. Monthly sediment analyses of various stations in Apalachicola Bay. Median grain size determined by Method 1 (Inman, 1952; Folk and Ward, 1975) and Method 2 (Folk, 1966; Ingram, 1971). Organic content determined according to Cummins and Waycheck (1971).

MEDIAN GRAIN SIZE (\$)				
STATION	DATE	METHOD 1	METHOD 2	\% ORGANICS
1	3/75	1.90		4.66
	4/75	2.20		4.05
	5/75	2.55		5.14
	6/75	2.50		6.26
	7/75	3.10		6.70
	8/75	3.35	2.08	7.18
	9/75	2.40		5.84
	10/75	2.20		4.29
	11/75	2.20		8.79
	12/75	2.25	2.00	6.13
	1/76	2.35		6.41
	2/76	4.20	4.20	12.88
IX	3/75	2.00		1.78
	4/75	1.85		1.76
	5/75	1.95		1.68
	6/75	2.00		1.64
	7/75	2.00		2.00
	8/75	1.95	2.36	2.42
	9/75	2.05		2.16
	10/75	2.15		2.26
	11/75	2.10		2.47

Table 1 (continued)

Table 1 (continued)

STATION	DATE	METHOD 1	METHOD 2	\% ORGANICS
	1/75	3.55		3.87
	2/76	3.60	2.81	5.80
4	3/75	3.45		6.21
	4/75	3.85		5.86
	5/75	3.45		5.41
	6/75	4.15		9.48
	7/75	4.05		9.10
	8/75	3.95		8.23
	9/75	4.00		9.00
	10/75	4.05		9.75
	11/75	4.00		11.23
	12/75	4.00		8.36
	1/76	4.20		7.06
	2/76	4.00		6.02
4A	3/75	4.15		6.10
	4/75	4.00		6.25
	5/75	3.90	1.89	6.52
	6/75	4.00		7.75
	7/75	3.85	2.18	8.30
	8/75	3.45		9.39
	9/75	4.10		11.09
	10/75	4.05		9.10
	11/75	4.05		12.05
	12/75	4.05		10.55

Table 1 (continued)

STATION	DATE	METHOD 1	METHOD 2	\% ORGANICS
	1/76	4.05		7.97
	2/76	4.10		8.30
5A	3/75	1.70		1.11
	4/75	1.75		1.03
	5/75	1.60		1.40
	6/75	1.85		0.97
	7/75	1.75		2.38
	8/75	1.95	1.79	2.83
	9/75	1.80		1.41
	10/75	1.85		1.70
	11/75	1.90		4.64
	12/75	2.10	1.93	8.45
	1/76	1.80		2.78
	2/76	1.80	1.72	2.33
5B	5/75	4.20		11.45
	6/75	4.45		10.61
	7/75	4.25		12.32
	8/75	4.20		12.51
	9/75	4.15		11.95
	10/75	4.20		12.20
	11/75	4.20		12.21
	12/75	4.20		9.39
	1/76	4.20		9.19
	2/76	4.20		10.52

Table 2: Annual monthly means:
Apalachicola River Flow (Blountstown; Florida: U.S. Army Corps of Engineers, Mobfle District) and Local Raínfall (Combined data from MUAA climatolólical Station In Apalachicola and the East Bay Fire Tower).

Time Period	Apalachicola River Flow (Cubic) Feet Per Second)	Local Rainfall (inches)
	25,185	4.98
$3 / 73-2 / 73$	32,955	5.20
$3 / 74-2 / 75$	21,550	6.23
$3 / 75-2 / 76$	30,708	5.80
$3 / 76-2 / 77$	26,174	4.66

Table 4: Factor analysis of a set of physicochemical variables taken from March, 1972 to February, 1976. Color, turbidity, Secchi readings, salinity, temperature, and chlorophyll A were noted at Station 1 in the Apalachicola Estuary Tidal Data included the stages of the tide on the day of collection while the wind variable was represented by 2 vector components.

Yariable	Factor 1 (49.0\% of the variance)	Factor 2 (22.3\% of the variance	Factor 3 (17.9\% of the variance	Factor 4 (10.8\% of the variance
River flow	-0.82	-0.0.08	-0.07	-0.08
Local rainfall	-0.04	-0. 30	-0.09	0.20
Tide (incoming or outcoming	0.26	0.61	-0.68	. 0.06
Tide (high or low)	0.09	0.39	0.61	-0.37
Wind direction (E-W)	-0.02	0.09	0.36	0.37
Wind direction ($\mathrm{N}-\mathrm{S}$)	0.10	-0.20	0.22	0.31
Secchi	0.57	-0.07	-0.17	0.24
color	-0.30	0.33	0.01	0.07
Turbidity	-0.73	0.54	0.08	0.23
Temperature	0.38	0.15	-0.02	-0.18
Salinity	0.68	0.21	0.23	-0.02
Chlorophyll A	0.47	0.51	0.09	- 0.31

Fig. 1: The Apalachicola Bay System showing assigned (permanent) stations for all research operations.

Fig, 3: • Bottom water temperature ${ }^{\circ} \mathrm{C}$ at Station 1 (Apalachicola Bay) from March, 1972 to March,

significances -
sto eqpor of a -
sto Expor of e -
hise:tis vatus.
......... ., rramizo : a coefficient canumt ae couputee.

Fig. 4: Surface salinity $\%$ at Station 1 (Apalachicola Bay) from March, 1972 to

Fig. 5:
Bottom salinity $\%$ at Station 1 (Apalachicola Bay) from March, 1972 to March, 1977.

 SIGNIFICAHEE R - - Phtil 2.14:43 -5:220 45
Fig. 6: Surface salinity $\% / 00$ at Station 5 (East Bay) from March, 1972 to March, 1977.

Fig. 7; Bottom sainity ${ }^{0} /$ oo at Station 5 (East Bay) from March, 1972 to March, 1977 .
Fig. 8: Surface water color (Pt-Co units) at Station 1 (Apalachicola Bay) from March, 1972 to March, 1977.
Fig. 9: Bottom water color (Pt-Co units) at Station 1 (Apalachicola Bay) from March, 1972 to March, 1977.
.
Fig. 10: Surface water color (Pt-Co units) at Station 5 (East Bay) from March, 1972 to March, 1977.

荡
$\stackrel{\underset{\sim}{6}}{\stackrel{5}{8}}$
:

胥		$\begin{aligned} & 8 \\ & \mathbf{8} \\ & \vdots \\ & \mathbf{8} \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{y} \\ & \mathbf{4} \end{aligned}$	a 0 0	$\begin{aligned} & 3 \\ & \mathbf{3} \\ & \overrightarrow{-1} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \\ & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{\ddot{8}} \\ & \mathbf{8} \end{aligned}$	$\begin{aligned} & 7 \\ & ; \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \underset{N}{N} \\ & N \end{aligned}$

Fig. 11: Bottom water color (Pt-Co units) at Station 5 (East Bay) from March, 1972 to March 1977.

Fig. 1
fig

 to March, 1977.
Fig. 12.
4FRL:CM SCRTCRERA'S : \quad. .

Fig 12: 1977 .

\% * *		$\begin{aligned} & \mathbf{8} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	0	$\begin{aligned} & \mathbf{8} \\ & \underset{8}{8} \end{aligned}$	4	$\begin{gathered} \text { 早 } \\ \text { + } \end{gathered}$	$$	$\begin{aligned} & \text { } \\ & 4 \\ & i+1 \end{aligned}$	\$

Fig. 15: Bottom turbidity (J.T.U.) at Station 5 (East Bay) from March, 1972 to March, 1977.
Fig．16：Secchi disk readings（m）at Station 1 （Apalachicola Bay）from March， 1972 to March， 1977.

to March， 1977.

 STATISTIES．．

.19 .64
.16 .45
.16645
+2121
.21942
\because
AFALAGU SGAFTERGRAMS ：
こORRELATION［RJ＝

－
がャケンJ vatues－
$\stackrel{7}{*}$
Fig. 17: Secchi disk readings (m) at Station 5 (East Bay) from March, 1972 to March, 1977.

sitursisse.

- 51818 . 71444 **3*6:
$\$ 9$

Fig. 20: Surface dissolved oxygen (PPM) at Station 5 (East Bay) from March, 1972 to March, 1977.

25

Fig. 24: Surface pH at Station 5 (East Bay) from November, 1974 to March, 1977

$=.15014$

$$
70.46238
$$

.10018
.19646
37

$$
\begin{array}{r}
.02254 \\
136.90721
\end{array}
$$

$$
=.08976
$$

3

$$
\begin{aligned}
& \text { MSSIH; valuts - }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { 플 } \\
3 \\
3 \\
3
\end{array} \\
& 11 \\
& .19466 \\
& 39.11377 \\
& \text { - } 1 \\
& 1 \\
& \text { - }
\end{aligned}
$$

V. Phytoplankton Productivity and Nutrient Analysis

R土chard L. Iverson

Vernon B . Myers

Department of Oceanography
 Florida State University

INTRODUCTION

Apalachicola Bay is a shallow, bar-built estuary approximately 12 miles long and 7 miles wide with a trean depth of 2.7 meters (M.L.W.). The bay is protected to the south by a line of barrier islands adjacent to the Gulf of Mexico (Fig. 1) and receives an average daily freshwater input of 22,000 cfs from the Apalachicola River (U.S. Geological Survey, 1971). Apalachicola Bay supports the major Florida oyster fishery (Colberg, et al., 1968; Menzel and Colke, 1969). Dawson (1955) Investigated the hydrography of the bay while Gorsilne (1963) described hydrographic and submarine geological features of the bay, Less than 7 percent of the bay bottom supports macrophyte growth (National Estuarine Study, 1970) suggesting that phytoplankton are the primary autotrophs in Apalachicola Bay. The investigation reported here was designed to determine patterns of phytoplankton standing crop and productivity as well as factors controlling phytoplankton productivity in Apalachicola Bay.

MATERIALS AND METHODS

Stations were set at various locations in Apalachicola Bay (Fig. 2) and sampling was started July, 1972. Water temperature and salinity were measured with a Beckman RS5-3 in gitu CSTD. Solar radiation data was obtained from a pyrheliometer located at the FSU Marine Laboratory. Apalachicola River discharge, measured at a gauging station near Chattahoochee, Florida, was obtained from the U.S. Geological Survey. Samples for chemical and biological analysis were taken at the surface and bottom of the water colum. Turbidity was measured with a Hach Model 2100 A turbidimeter. Total carbon dioxide for use in computing phytoplankton productivity data was measured with an Oceanography

International carbon analyzer using the method of Menzel and Vaccaro (1964). Nutrient samples were filtered through pre-washed Whatman GF/A glass fiber filters and poured into nalgene bottles. After addition of 1 ml of a 2 percent ($\% / v$) solution of mercuric chloride, the samples were placed on ice where they were kept until analyzed. Molybdate-reactive phosphorus was measured using the Murphy and Riley method (Strickland and parsons, 1972). Nitrate was analyzed with a modification of the Morris and Riley method (Strickland and Parsons, 1972) Vitrite was measured with the Bendschneider-Robinson method (Strickland and Parsons, 1972). Reactive silicate was measured according to the Mullin-Riley method with modifications as given in Strickland and Parsons (1972).

Five hundred milliliters of water were passed through a Whatman GF/A glass fiber filter for chlorophyll analysis with the spectrophotometric method given in Strickland and Parsons (1972). Phytoplankton productivity was measured with the carbon-14 method (Steeman-Nielsen, 1952). Samples were incubated in situ for about three hours after which the contents of the 180 ml incubation bottles were filtered through Whatman GF/C scintillation grade glass fiber filters. Radiocarbon activity on the filters was measured by Liquid scintillation spectrometry using Aquasol as the scintillation cocktail. One hundred milliliter aliquotes of bay water were filtered through Millipore 0.45 micron filters for analysis of phytoplankton species composition by the method of McNabb (1960). Nutrient enrichment experiments were conducted with water from East Bay and from Apalachicola Bay using modifications of the wethods of Ryther and Guillard (1959) and Menzel and Ryther (1961). (See appendices I and II for details of the methods).

RESULTS AND BISCUSSION

The circulation of surface waters of Apalachicola Bay is controlled by wind (Fig. 2). Bot tom circulation was uncoupled from wind except following periods when wind speeds were high enough to mix the water columin.

River discharge is the primary factor which controls nutrient concentrations in Apalachicola Bay (Table 1). Surface nitrate concentrations in both East Bay and Apalachicola Bay were highest during winter periods of maximum river discharge (Fig. 3, 4). An increase in surface phosphate concentration was also observed during winter periods of maximum river discharge (Fig. 5,6). Maxima in phosphate contentrations. observed during 1976 were the result of wind-mixing of sediments into the water column during periods of strong winds over the bay (Myers, manuscript in preparation). Phosphate maxima of this magnitude are not observed in the data record prior to 1976 since boats available for use were not capable of operation during periods of high winds. There do not appear to have been significant changes in yearly cycles of surface nitrate or phosphate concentrations at these two stations over the sampling period.

Surface phytoplankton productivity patterms exhibit maxima Hin the spring and minima in the fall and winter (Fig. 7,8). Results of nutrient enrichment experiments suggest that nutrients are not limiting for phytoplankton productivity during the winter but are limiting during the summer (Estabrook, 1973). An extensive tnvestigation of sumer nutrient limitation revealed that phosphate was the primary nutrient limiting phytoplankton productivity both in East Bay and in Apalachicola Bay with nitrate limiting productivity with frequency less than phosphate in

Apalachicola Bay (Appendices I and II). Water temperature is a majar factor which limits phytoplankton productivity in this estuarine system (Fig. 9).

Chlorophyll a can be used to estimate phytoplankton bionass (Lorenzen, 1968). A comparison of surface chlorophyll a values reveals a general decrease in maximum values for Apalachicola Bay (Fig. lo) compared to East Bay (Pig. in). Further data analysis will be required to determine the cause of this apparent decrease.

REFERENCES

Colberg, M.R., T.S. Dietrich, and D.M. Windham. 1968. The social and economic values of Apalachicola Bay, Florida. Final Report to Fed. Water Pollution Contorl Admin. Contract No. 14-12-117. 58 p. Dawson, C.E. 1955. A contribution to the hydrography of Apalachicola Bay, Florida. Inst. Mar. Sci. 4;13-35.

Estabrook, R.H. 1973. Phytoplankton ecology and hydrography of Apalachicola Bay, Florida. M.S. Thesis, Florida State University. 166 p.

Gorsline, D.S. 1963. Oceanography of Apalachicola Bay, Florida. In T. Clements (ed.). Essays in Marine Geology in Honor of K.O. Enery. p. 69-96.

Lorenzen, C. 1968. Carbon/chlorophy 11 relationships in an upwelling area. Limol. Oceanogr. 13:202-204.

MeNabb, C.D. 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limol. Oceanogr. 5:57-61.

Menze1, D.W. and J.H. Ryther. 1961. Nutrients limiting the production of phytoplankton in the Sargasso Sea with special reference to iron. Deep Sea Res. 7:276-281.

Menzel, D.W. and R.F. Vaccaro. 1964. The measurement of dissolved organic
and particulate carbon in seawater. Limol. Oceanogr. 9:138-142.
Menzel, R.W. and E.W. Cake, Jr. 1969. Identification and analysis of the biological value of Apalachicola Bay, Fiorida. Final report. to the Fed. Water Poll. Contr. Admin. Contract No. 14-12-191. 164 p. Ryther, J.H. and R.R.L. Guillard. 1959. Encichment experiments as a means of studylng nutrients limiting to phytoplankton production. Deep Sea Res. 6:65-69.

Steeman-Nielsen, E. 1952. The use of radioactive carbon (C-14) for measuring organic production in the sea. J. du Conseil. 18:117-140.

Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Canada No. 167 (2nd ed.):

TABLE 4
CORRELATION COEFFICIENTS OF LINEAR REGRESSIONS OF NITRATE, ORTHOPHOSFILATE, SILICATE, AND ANLOOIIA ON SNLINITY

Date		NO_{3}	PO_{4}	SiO_{3}	NH_{3}
Oct 14, 1972	T	-. 70	-. 73		
	B	$+.12$	-. 14		
Dec 2, 1972	T	-. 88	-. 20	-. 98	
	B	-. 75	-. 55	-. 85	
$\operatorname{Jan} 6,1973$	\boldsymbol{T}	-. 55	-. 89	-. 99	
	B	-. 84	$-.82$	-.87	
Feb 17, 1973	1	+. 002	-. 95	$-.33$	-. 02
	B	$\pm .58$	-. 1.1	-. 002	. .15
Max 19, 1973	T	-. 95	-. 78	-. 98	-. 85
	B	-. 97	$-.60$	$-.998$	-. 45
Apr 22, 1973	T	$-.76$	-. 77	-. 93	-. 67
	B	-. 62	-. 62	$-.80$	-. 93
May 19, 1973	T	-. 88	$\cdots 54$	-. 998	-. 43
	B	-. 96	-. 65	-. 99	-. 81
Jun 11, 1973	T	$-.60$	-. 01	-. 995	-. 55
	B	-. 94	-. 51	-. 93	$\pm .06$
Jul 12, 1973	T	-. 82	-. 10	-. 97	$-.82$
	B	-. 80	+. 42	-. 93	+. 03
Aug 22. 1973	T	-. 90	$+.04$	-. 95	$-.50$
	B	-. 9.91	$-.84$	-. 94	-. 91
Sep 10, 1973	T	-. 99	-. 29	-. 995	-. 83
	B	-. 98	$+.15$	-. 99	-. 98

Figure 1. Map of Apalachicola Bay

24\% 0 ?
272.43
197.8 2
173.2?
242.59
124.99
99.40
74.9n
23.25
25.56
1.09

256.00
06092
20\%.80
179.20
153.60
128.60

0
0

51.20
に. \boldsymbol{n} Sw
Figure 4, Surface nitrate-nitrogen in East Bay.

\%	\cdots	-	\cdots	\cdots	on	N	c.	。	,	c
\%	$\stackrel{\sim}{0}$	F	$\stackrel{\sim}{N}$	\cdots	5	-	*	E	N	
$\stackrel{\sim}{2}$	E	8	星	9	$\underset{\sim}{*}$	$\stackrel{-1}{2}$	${ }_{\sim}^{*}$	\pm	-	

Figure 5. Surface posphate-P in East Bay.
$\stackrel{\sum}{\approx}$

58.50
53.66
47,82
41.98
3.5 .14
70.30
7\% 4.45
40.62
12.78
5.94
1.10

81.

O	-	0	0	0	-	\square	-	ω	0
$\stackrel{\square}{0}$	${ }^{\text {P }}$	$\stackrel{*}{*}$	\%	$\stackrel{4}{*}$	In	F	\%		$\stackrel{-1}{ }$
$\stackrel{\sim}{\sim}$	$\stackrel{5}{6}$	in	\%	\cdots	-	N	N	$\stackrel{\sim}{0}$	\cdots

Pigure 7. Surface primary productivity in East Bay.

99.00
89.20
79.40
69.60
59.00
50.00
40.20
30.40
10.80
20.60

Figure 9. Productivity as a function of temperature.

[^0]\[

$$
\begin{aligned}
& y+1 y 06
\end{aligned}
$$
\]

10.20
9.27
1.34
7.41
6.48
5.55
4.62
3.69
2.76
1.83

APPENDIX 1

ASPECTS OF NUTRIENT LIMITATION OF PHYTOPLANKTON PRODUCTIVITY IN THE APALACHICOLA BAY SYSTEM

by

Vernon B. Myers

Richard L. Iverson
Dept. of Oceanography Florida State University Tallahassee, Florida

IMTRODUCTION

The quantification of the extent of nutrient limitation in a marine ecosystem is critical for the prediction of the response of the systern to various nutrient related stresses. To make sound environmental policy, the critical nutrients and the relationships between these nutrients and plant productivity must be known.

In estuarine systems, patterns of nutrient limited phytoplankton production are complex and variable. It has been suggested that while nutrients can limit phytoplankton growth in stratified estuaries, shallow, well-mixed estuaries usually have nutrients, and especially phosporus, present in excess of phytoplankton demands (Pomeroy, et al, 1972). However, spatial and temporal variability in nitrogen and phosphorus limitation have been identified in both types of estuaries (Putnam, 1967; Flemer, 1970; Carpenter, 1971; Ryther \& Dunstan, 1971; Thayer, 1971; Kraswick \& Caperon, 1973).

Nitrogen occurs in estuarine systems in various dissolved, and particulate forms. Nitrite, nitrate, molecular nitrogen, anmonium, urea, dissolved organic nitrogen, particulate organic nitrogen, and amino acids are nitrogen forms that can be used directly or indirectly by plankton in marine ecosystems (Dugdale \& Goering, 1967; Riley \& Chester, 1971; Carpenter, 1971; Thayer, 1971). The distribution of the different nitrogen forms in marine environments is controlled by complex interactions between biological, physical, and chemical processes.

Phosphorus occurs in estuarine systems, in a variety of collodial, dissolved, and particulate forms (Taft, et al, 1975). The distribution of the forms of phosporus in marine systems is controlled by physical, chemical, and biological processes. The residence time of phosphate in coastal systems is
fairly short, between 5 and 100 hours (Pomeroy, 1960). Phosphorus concentrations in estuarine systems may be controlled by reversible sorption reactions between sediments and the overlying water (Rochford, 1951; Carritt \& Goodgal, 1954; Jitts, 1959). Biological activity within the sediments can also move significant amounts of phosphorus between the sediments and the water column (Poneroy et a1, 1965; Hale, 1975), and has been shown to control the seasonal cycie of phosphorus concentrations in several shallow turbid estuaries (Pomeroy, et al, 1972). Phosphorus fluxes within estuaries can also be dominated by reactions occurring within the water colum. Phosphorus uptake within the water column is usually due to phytoplankton and/or bacteria (Correll, et al, 1975; Taft, et al; 1975). Regeneration of phosphorus within the water column can take place by autolysis, zooplankton consumption and remineralization, or bacterial degradation (Pomeroy, et at, 1963; Martin, 1968; Hargrave \& Geen, 1968; Paters \& Rigler, 1973; Barsdate, et al, 1974).

Previous phytoplankton productivity studies in Apalachicola Bay indicated that nitrogen and phosphorus were potential limiting nutrients, while silicate and trace metal additions never stimulated phytoplankton productivity (Estabrook, 1973). This paper presents preliminary results of nutrient enrichment experiments and phosphate uptake experiments designed to quantify the extent of nutrient limited phytoplankton production and to determine the importance of phosphorus in the Apalachicola Bay System.

MATERIALS \& METHODS
Sampling trips to Apalachicola Bay and East Bay (Fig. 1, Livingston et al.) were taken seasonally during 1975 and 1976 to determine the extent of nutrient limitation in the Bay System. A detailed description of the physiography and biota of the Apalachicola Bay System can be found in Livingston et al (1974).

Water temperature and salinity were determined with a Beckman RS 5-3 Portable salinometer. Secchi disc measurements were taken to estimate light attenuation with depth. Turbidities were analyzed with a Hach model 2100 A Turbidometer. Suspended solids were determined gravimetically. Inorganic suspended solids were also determined gravimatically after ashing the samples at $550^{\circ} \mathrm{C}$ for 4 hrs .

500 ml water samples were collected at stations $1 A$ in East Bay and 7 in Apalachicola Bay, for nutrient analysis (Fig. 1, Livingston et al). Samples were immediately filtered through Whatman GF/A glass fiber filters upon collection. One ml of $2 \% \mathrm{HgCl}_{2}$ solution was added to eliminate microbial processes and the samples were then placed on ice. All nutrients were analyzed within 48 hrs. Soluble reactive phosphate was analyzed by the method of Murphy and Riley as out lined in Strickland \& Parsons (1972). Total dissolved phosphate was analyzed by the persulfate oxidation method listed in Standard Methods (1971). Nitrite was detemined by the method of Bendschneider \& Robinson given in Strickland \& Parsons (1972). Nitrate determinations were based on the method of Morris \& Riley with modifications given in Strickland \& Parsons (1972).

Chlorophyll-a was determined by the method of Loftus \& Carpenter
(1971) or the spectrophotometric method given in Strickland \& Parsons (1972). The total inorganic carbon (CO_{2}) content of the water was either determined with a Total Carbon Analyzer (Oceanography International, Inc.) using an infrared detector or from a salinity vs CO_{2} standard curve determined from 2 years of data collected in the Bay System. Dissolved organic carbon was determined by the method of Menzel \& Vaccaro (1964) using the Total Carbon Analyzer. Phytoplankton taxonomy was determined by the method of Holmes (1962). Cell carbon was estimated from cell volumes according to the method of Strathmann (1967).

Two-factorial nutrient enrichment experiments with nitrogen and phosphorus were conducted with phytoplankton in water samples from stations in East Bay and Apalachicola Bay. General mathods of nutrient enrichment experiments can be found in Scheleske, et al (1974) and Gerhart \& Likens (1975). Water was collected in 20 l polyethylene carboys and aliquots were placed in 500 ml glass incubation bottles. Samples from each station were treated with either 0,5 , or $50 \mathrm{ug}-\mathrm{atm} / 1$ nitrate-nitrogen or $0.0,0.2,0.5$, or $5.0 \mathrm{ug}-\mathrm{atm} / 1$ phosphatephosphorus. Nutrients were added as 1 ml volumes. Duplicates were prepared for each concentration. A 4 hour acclimation period was begun about 10 hours and was followed by an incubation with either 2 or 4 uCi ${ }^{14} \mathrm{C}$ labeled bicarbonate for approximately 4 hours. Incubation and acclimation were performed in situ. Two 100 ml aliquots from each bottle were filtered through Whatman GF/C glass fiber filters. The filters were placed in 5 ml of Aquasol ${ }^{R}$ and the activity was determined by liquid scintillation counting (LSC). Primary productivity was calculated by the method of Strickland and Parsons (1972).

Phosphorus uptake was measured in the Apalachicola Bay System to determine phosphate dynamics and uptake rates of natural plankton communities.

General methods of planktonic phosphorus uptake as a function of concentration can be found in Halmann \& Stiller (1974) and Taft et al (1975). Water was collected in 201 polyatheylene carboys and aliquots were placed in 500 ml glass incubation bottles. Samples were treated with $0.0,0.2$, 0.5 , or 2.0 ug-atm/1 phosphate-phosphorus. Half of the samples were poisoned with 1 ml of $2 \% \mathrm{HgCl}_{2}$ solution. Between 500,000 and $1,000,000$ dpm/al of carrier free ${ }^{32} \mathrm{P}$ phosphoric acid was added to the samples. Samples were incubated in situ. Fifteen 15 ml subsamples were periadically removed from all bottles and filtered thru Whatman GF/A glass fiber filters. Ten ml of filtrate was then pipetted into on LSC vial for counting. The 32p was counted by measuring Cerenkov radiation of the filtrate (Curtis \& Toms. 1972; Fric \& Palovickova, 1975) with a liquid scintillation spectrometer. Planktonic phosphate uptake rates were estimated from linear regression slopes of total minus HgCl_{2}-treated phosphate uptake vs time.

The results of nutrient enrichment experiments can be found in Table I. At station $i A$, phosphate enhanced phytoplankton carbon fixation more than nitrate. Phosphate enhanced carbon fixation during July and September 1975 and June and Juty 1976. No significant enhancement occurred during January and March 1976. Nitrate additions did not affect carbon fixation by phytoplankton at this station and no significant phosphate-nitrate finteractions were observed.

Enrichnent experiments at station 7 indicated both nitrate and phosphate enhanced fixation of carbon during certain times of the year. significant nitrate enhancement occurred during September 1976; while significant phosphatenitrate interactions were found during July 1975 and July 1976:

Nutrient enhanced phytoplankton carbon fixation occurred only when water temperatures were above $21.5^{\circ} \mathrm{C}$ and nitrate and phosphate concentrations were low (see Table II). Nitrate levels less than 0.47 ug-atm $\mathrm{NO}_{3} \mathrm{~N} / \mathrm{I}$ limited phytoplankton production in Apalachicola Bay; however, significant nitratephosphate interactions were observed at nitrate concentrations up to $3.49 \mathrm{ug}-$ $\mathrm{atm} \mathrm{NO}_{3}-\mathrm{N} / \mathrm{l}$ and phosphate concentrations as high as 0.43 ug-at $\mathrm{PO}_{4}-\mathrm{P} / \mathrm{I}$. Phosphate enhanced phytoplankton carbon fixation in East Bay when concentrations were less than 0.35 ug -atm $\mathrm{PO}_{4}-\mathrm{P} / 1$.

The nutrient enrichment experiments suggest that at phosphate concentrations less than 0.35 ug-atm $\mathrm{PO}_{4}-\mathrm{P} / 1$ the internal functional phosphorus pools (Fuhs, 1969; Rhee, 1973) of the Bay phytoplankton were unsaturated. Phosphorus uptake data tends to support this hypothesis (see Table III). Planktonic phosphate uptake rates did not maximize until external phosphate concentrations
were between 0.57 and 0.93 ug-atm $\mathrm{PO}_{4}-\mathrm{P} / 1$ under phosphate 1 imited conditions. However, when phosphate was not limiting maximum uptake rates were obtained at lower phosphate concentrations. Similar observations have been cited in the literature (Perry, 1976).

The differences in the spatial responses of phytoplankton of the Apalachicola Bay-East Bay system to nutrient additions cannot be satisfactorially explained by species composition differences (see Table IV). Phytoplankion species differences do occur between the two stations; however, the majority of the species are common to both areas. Spatial differences in nitrate enrichment responses may be due to the presence of other assimilitive farms of nitrogen, such as ammonium, nitrite, or urea. Differences in phosphate limjtation between the two stations can not be explained by concentration differences alone and may be due to suspended sediment and water column interactions.

Temporal differences in the response of phytoplankton to nutrient additions suggests that temperature limits phytoplankton productivity during colder months (Estabrook, 1973) and that nutrients limit productivity during the warmer seasons. The nutrient enrichment and phosphorus uptake experiments presented in this paper suggest that phosphorus is the most critical limiting nutrient in this estuarine system and that a reduction in phosphate level during summer months could reduce phytoplankton productivity.

BIBLIOGRAPHY

Barsdate, R.J., R.T. Prentki, and T. Fenchel (1974) Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers. Oikos, 25, 239-251.

Carpenter, E.J. (1971) Annual phytoplankton cycle of the Cape Fear River Estuary, North Carolina. Ches. Sci., 12, 95-104.

Carritt, D.E. and S. Goodgal (1954) Sorption reactions and some ecological implications. Deep Sea Res., 1, 224-243.

Correll, D.L., M.A. Faust, and D.J. Severn (1975) Phosphorus flux and cycling in estuaries, pp. 108-136 In: Estuarine Researth, Vo1. I, L.E. Cronin, editor, Academic Press.

Curtis, E.J.C. and I.P. Toms (1972) Techniques for counting carbon-14 and phosphorus-32 labelled samples of polluted natural waters, pp. 167179 In: Liquid Scintillation Counting, Vol. II, M.A. Crook, P. Johnson, D. Scales, editors, Heyden \& Sons Ltd.

Dugdale, R.C., and J.J. Goering (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr., 12, 196-206.

Estabrook, R.H. (1973) Phytoplankton ecology and hydrography of Apalaciicola Bay. M.S. Thesis, Dept. of Oceanogr., Florida State University, 166 pp.

Flemer, D.A. (1970) Primary production in the Chesapeake Bay. Ches. Sci.s 11, 117-129.

Eric, F. and V. Palovickova (1975) Automatic liquid scintillation counting of 32 p in plankt extracts by measuring the Cherenkov Radiation in aquepous solutions. Int. J. App. Rad. Iso., 26, 305-315.

Fuhs, G.W. (1969) Phosphorus content and rate of growth in the diatam Cyclotella nana and Thalassiosira fluviatus. J. Phycol., 5, 315-321.

Gerhart, D.A. and G.E. Likens (1975) Enrichment experiments for determining ${ }^{-}$ nutrient limitation, four methods compared. Limnol. Oceanogr., 20, 649-653.

Hale, S.S. (1975) Estuarine nutrient cycles: the role of benthic commuties. Personal Communication 10 pp .

Halmann, M. and M. Stiller (1974) Turnover and uptake of dissolved phosphate in freshwater. A study of Lake Kinneret. Limnol. Oceanog. ; 19, 774-783.

Hargrave, B.T. and G.H. Geen (1968) Phosphorus excretion by zooplankton. Limnol. Oceanogr., 13, 332-342.

Holmes, R.N. (1962) The preparation of marine phytoplankton for microscopic examination and enumeration on molecular filters. U.S. Fish and Wildlife Serv., Spec. Sci. Rep. Fish, 433, 6 pp.

Jitts, H.R. (1959) The adsorption of phosphate by estuarine bottom deposits. Aust. J. Mar. Freshwater Res., 10, 7-21.

Kraswick, G. and J. Caperon (1973) Primary productivity in a nutrient limited tropical estuary. Pac. Sci., 27, 189-196.

Livingston, R.J., R.L. Iverson, R.H. Estabrook, V.E. Keyds, and J. Taylor (1974) Major features of the Apalachicola Bay System: physiography, biota, and resource management. Florida Sci., 37, 245-271.

Loftus, M.E. and J.H. Carpenter (1971) A fluorometric method for detemining chlorophylls a, b, and C. J. Mar. Res., 29, 319-338.

Martin, J.H. (1968) Phytoplankton-zooplankton relationships in Narragansett Bay. III Seasonal changes in zooplankton excretion rates in relation to phytoplankton abundance. Limnol. Oceanogr., 13, 63-71.
Menzel, D.W. and R.F. Vaccaro (1964) The measurement of dissolved and particulate carbon in seawater. Limnol. Oceanogr., 9, 138-142.

Perry, M.J. (1976) Phosphate utilization by an oceanic diatom in phosphorus-1imited chemostat culture and in oligotrophic waters of the central North Pacific. Limnol. Oceanogr., 21, 88-107.

Peters, R.H. and F.H. Rigler (1973) Phosphorus release by Daphnia. Limnol. Oceanogr., 18, 821-839.

Pomeroy, L.R. (1960) Residence time of dissolved phosphate in natural waters. Sci., 131, 1731-1732.

Pomeroy, L.R., H.M. Matthews, and H.S. Min (1963) Excretion of phosphate and soluble organic phosphorus compounds by zooplankton. Limnol. 0ceanogr., 8, 50-55.

Pomeroy, L.R., E.E. Smith, and C.M. Grant (1965) The exchange of phosphate between estuarine water and sediment. Limnol. Oceanogr., 10, 167-172.
Pomeroy, L.R., L.R. Shenton, R.D.H. Jones, and R.J. Reinhold (1972) Nutrient flux in estuaries In: Nutrients and Eutrophication; G.E. Likens, editor, American Society of Limnol. Oceanogr. Inc.

Putnam. H.D. (1967) Limiting factors for primary productivity i_{1} a west coast Fiorida Estuary. Adv. Water Poll. Res. 3rd. Int. Conf. Munich Proc., 3, 121-152.

Rhee, G.Y. (1973) A continuous culture study of phosphate uptake, growth rate, and polyphosphate in Scenedesmus spp. J. Phycol., 9, 495-506.

Riley, J.P. and R. Chester (1971) Introduction to marine chemistry. Academic Press, 465 pp.

Rochford, D.J. (1951) Studies in Australian estuarine hydology. I. Introduction and comparative features. Aust. J. Mar. Freshwater Res., 2, 1-116.

Ryther, J.H. and W.M. Dunstan (1971) Nitrogen, phosphorus, and eutrophication in coastal marine environments. Sci., 171, 1008-1013.

Schelske, C.L., E.D. Rothman, E.F. Stoermer, and M.A. Santiago (1974) Response of phosphorus limited Lake Michigan phytoplankton to factorial enrichments with nitrogen and phosphorus. Limol. Oceanogr., 19, 409414.

Strathmann, R.R. (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr., 12, 411-418.

Strickland, J.D.H. and T.R. Parsons (1972) A practical handbook of seawater analysis. Fish. Res. Bd. Can. 370 pp .

Taft, J.L., W.R. Taylor, and.J.J. McCarthy (1975) Uptake and release of phosphorus by phytoplankton in the Chesapeake Bay Estuary, USA. Mar. Biol., 33, 2l-32.

Thayer, G.H. (1971) Phytoplankton production and the distribution of nutrients in a shallow unstratified estuarine system near Beauford, N.C. Ches. Sci., 12, 240-253.

98.

ACKOHLEDGEMENTS

Field collections were funded by grants from NOAA Office of Sea Grant, U.S. Department of Comerce (Grant Nuber 04-3-15 $\varepsilon-43$), and the Board of County Commissioners of Franklin County, fla.

TABLE T

 in response to nutrient additions:.

1领 $3 / 29 / 75$

1A. $6 / 10 / 76$
$\because 3 \mathrm{HO}_{3} \because$

7A. 7/5/75

$77 / 5 / 75$

 mert in ure $\Omega \mathrm{hr}^{-1} \mathrm{I}^{-1}$.)

Enviromenta? and nutrient Deté

 Turb is turbiaity in FTU; Chlat is chlorophyll-a in jerl; Canbon i= at phenton carbon inforlo.

TABLE TTE

Station \& Date					
		\because			
1 A	9/25/75	40.51		79:40	79.40
7	9/26/76	43.49		51.33	45.45
1A	1/13/76	53.17	------	43.83	54.07
7	1/13/75	28.51	------	32.20	27.69
1 A	3/29/76	61.01		S7.53	69.79
7	3/29/78	. 25.60	-----	30.55	29.8!
14	6/10/76	86.11	102.87	118.34;	125.63
7	5/10/75	44.47	42.52	42.09	43.17
14	7/5/75	53.55	65.46	75.55	72.19
7	7/5/75	52.76	67.93	67.23	64.07

: Phosphate uptate rates vere estinatet fron tine sloge at
 AlI P^{2} wene greater then 0.90 .

TABEE IV
Phytoplankton Svecies Deta＊

	9／76	1／75	3／76	6／7E	7／7E
Mipatproce spo	＝－－	－－	\cdots	＋－－	プフ
Bacillaria paxillifer	－－－－	＋＋－			
Bacterimstrum spo	－	－－－	－－－	－－＋－	－
Cenatiur fursa	－－	－－	－－－－	＋－	－－－－
Chaetocen ros locanziョnun	＋＋－	－－＋－	－－	－－－－	－．．－－
Chaetoceros son 1	－－	－－	－－－－	－－＊－	－－＋
Chaetoceros spp 2	－－－	－－	\cdots	－－＋＋	$\cdots+$
Cosconeis disculodes	$+\cdots+$	＋－－	－－＋	＋－＋	＋－＋－
Coscinodiscus radiatus	＋－＋4	\cdots	＋－－－	＋－－	－－＋
Coscinotiscus sep	－－－	－－－	－－－－	－－＋－	＋－
Cyclotelle spal	＋＋＋＋	\cdots	－－－－	＋＋＋＋	＋＋．＋＋
Cyclotelic smo 2	＋++	＋＋＋	＋＋＋＋	＋＋＋＋	＋＋＋+
Gycosigne son I	＋－．－－	＋－－－	＋－＋	＋i＋－	＋＋＋－
Gyrosigre spo 2	－－－－	－－－－	－－－－	＋－－－	＋－－
Melosina granulata	－－－－	－＋＋	＋＋＋＋	－－	－
Mavicula spa I	＋－＋－	＋－＋－	＋－＋－	＋－＋－	＋－＋－
Mavicuia syp 2	－－－－	－－－	$\rightarrow-+$	－－－－	－－－
Mitrciola closteriun	＋－－－	＋－＋－	＋－＋－	$\pm+$＋	＋－＋－
Mitzchia panaciors	－－－－	－－－	－－－－	－－＋－	－－
Pizosoleniasoo	－－－－	－－－	－－－	－－＋－	－－－－
Strietoll ${ }^{\text {a }}$ sput	－－－－	－－－	－－．．．	－－＋－	－－－
Surinella smithii	\therefore－－	－－－	－－－	－＋	－－－

Syncita fulpens
Thallasioner.a nitx citiotes +- +-
Thallasioneria spo -- - - - -
-- -- +- -- $\div-\quad \pm$

* Undef each date the left column represents stetica la and tion wif: colinn represents station 7. Species chsent -- ; species reenent preater than $5000 / 1$ but less than loo,000/1 4-; sכecies peresnt greater than $100,000 / 1 .+\div$.

105.

APPENDIX 2

Phosphorus Limited Phytoplankton Produetivity in

Northeastern Gulf of Mexico Coastal Waters

An understanding of nutrient iimitation of marine phytoplankton growth is important in elucidating mechanisms of phytoplankton competition and succession (I) and in making decisions concerning the use of the aquatic environment for waste disposal (2). Nitrogen has been identified as the primary limiting nutrient for phytoplankton in marine watersi at various locations in the Pacific and Atlantic Oceans, offshore Noetheastern Gulf of Mexico, and in California and New England coastal waters (3). We report results of nutrient enrichment experiments conducted in coastal and estuarine waters which suggest that phosphorus is frequently more important than nitrogen in limiting phytoplankton productivity in the Northeastern GuIf of Mexico.

Experiments to determine nutrient limitation of phytoplankton productivity were conducted monthly during the summers of 1975 and 1976 in several shallow North Florida coastal systems (Fig: 1) by inorganic carbon-14 uptake and phosphorus-32 bioassays. The carbon uptake bioassays were two-factorial designs in which different concentrations of phosphate and nitrate were added to water samples along with ${ }^{14} \mathrm{C}$ labeled bicarbonate. (4). The phosphate uptake experiments were one-way designs in which different concentrations of pinosphate were added to water samples along with 32 p labeled phosphate (5). Environmental factors including temperature, salinity, turbidity, and $\sum \mathrm{CO}_{2}$ were measured (6). Nutrient samples were collected, stored, and analyzed according to prescribed methods (7).

Water samples were collected for chlorophyll-a and phytoplankton species composition determinations (8).

This discussion of nutrient limited phytoplankton productivily in the coastal waters of the Northeastern Gulf of Mexico will be limited to months where water temperatures are greater than $25^{\circ} \mathrm{C}$. Previous investigations of the phytoplankton ecology of these systems suggest that during the rest of the year nurpient concentrittions are either high enough to meet phytoplankton demands or temperatures are low enough to be the primary factor limiting phytoplankton productivity (9).

Light and temperature did not vary widely between the various sampling dates and locations (Table l). Significant differences were observed in salinity; turbidity, nutrient concentration, and phytoplankton productivity between stations. The relatively low mean salinity values observed at the Apalachicola and Oohlockonce estuarine stations are the result of river droinage. The higher turbidity values at the Apalachicola stations relative to the othe? stations are probably a result of niver discharge and mixing processes (10). The Apalachicola and Ocklochnee stations exhibited. higher nutrient concentrations and higher primary productivity and chlorophyli-a than the other stations. Phytoplankton species diifferences were observed between the high and low salinity stations
(11). Phytoplankton and nutrient data were treated with linear regression techniques. Linear correlation coefficients were determined between phytoplankton productivity and soluble reactive phosphate, soluble nitrate, and soluble nitrite concentrations. Phytoplankton productivity was more strongly correlated with soluble
reactive phosphate concentration ($r=+0.73$) and was weakly correlatec with soluble reactive nitrate ($r=+0.41$) or soluble nitrate ($r=+0.2$ This suggests that soluble reactive phosphate concentration was more impontont than dissolved nitrate on nitrite levels in explaining sumner phytoplankton productivity in the coastal systems of the Northeastern Gulf of Mexico.

A multiple regression model was constructed to determine which combinations of environmental or nutrient variables could explain the most variation of phytoplankton productivity in these coastal systems. A multiple linear regression model was designed with phytoplankton primary productivity as the dependent variable and temperature, salinity, turbidity, surface light intensity, soluble nitrate, soluble nitrite, and soluble reactive phosphate as possible independent variables. Soluble reactive phosphate and salinity were the only variables which met the model constraints (12) and together they explained 64% of the variation in phytopiankton productivity in theise coastal systems.

Results of both the carbon uptake and phosphate uptake nutrient enrichment bioassays also indicated that soluble reactive phosphate was more important than soluble nitrate in limiting phytoplankton productivity during the sumner months in these coastal systems. (Table 2). Phosphate additions stimulated phytoplankton carbon fixation more frequertly than nitrate additions. When phosphate additions stimulated carbon uptake, phytoplankton phosphate uptake was also stimulated (13).

The nearshore Northeastern Gulf of Mexico environments investigated jin this study receive runoff which does not contain high cissolved phosphate concentrations, in contrast to New England
coastal waters (14). Shallow, clear waters overlie sandy sediment: which remain in the water colum for only short periods after suspension (15) in contrast to the silty, turbid waters of the nearshore Georgia coast. Pomeroy (16) suggested thet phosphorus does not seem to be a limiting nutrient for phytoplanktor gromth in any except some of the clearest, sediment-free estuaries. The Apalachicola Bay water columi contains high turbidity for severad days following periods of high winds. Phytoplankton are not phosphate limited under these conditions but become phosphate Iimited after sediments settle to the botiom (10). The observatio. that phosphorus is important as a limiting nutrient for phytoplank.. ton in the nearshore Northeastern Gulf of Mexico suggest; that water quality plunning for the coastal zone is best done on a regional basis, with consideration given to the bio-geo-physical. characteristics which control nutrient cycling.
Vєrnon B. Myers;
Richard L. Iverson
Department of Oceanography
Florida State University
Tallahassee, Florida 32306
D. W. Menzel, E. M. Hulburt, and J. H. Ryther, Deep Sea Res. 10, 209 (1963); D. Titman, Sci. 192, 463 (1976); D. W. . Schindler, ibid. 195, 260 (1977).
2. A. L. Hammond, ibid. 172, 361 (1971); N. A. Jaworski, D. W. Leaw, Jr., and O. Villa, Jr., Limnol. Oceanogr. Special Sym. Vol. . 1,274 (1972).
3. R. W. Eppley, Water Pollution Control Res. Series No. 16010 EAC 12171 (Environmental Protection Ageilcy, Washington, D.C., 1971); J. H. Ryther and W. R. Dunstan, Science 171,1198 (1971); J. C. Goldman, K. R. Tenore, and H. I. Stanley, ibid. 180, 955 (1973); J. G. Jennings, M.S. Thesis, Florida State University, Tallahassee, Florida, 83 p (1973); S. Vince and I Valiela, Mar. Biol. 19, 69 (1973).
4. Surface water ($z=0.5 \mathrm{~m}$) was collected and placed in 500 ml glass incubation bottles. Nutrient concentrations of $0.0,5.0$, or $50.0 \mu \mathrm{~g}-\mathrm{atm} \mathrm{NO} 3-\mathrm{N}^{-1}$ and $0.00,0.25,0.50,2.00$, or 5.00 $\mu \mathrm{g}$-atm $\mathrm{PO}_{4}-\mathrm{P} 1^{-1}$ were obtained by adding appropriate ammounts of $\mathrm{NaNO}_{3} \circ \mathrm{Na}_{2} \mathrm{PO}_{4}$ to each bottle. Phytoplankton were acclimated in situ to the added nutrients for 4 hours and then incubated in situ with $4 \mu \mathrm{Ci}$ of ${ }^{14} \mathrm{C}$ labeled bicarbonate. Two 100 ml aliquots from ach bottle were filtered through Whatman GF/C glass fiber filters. The filters were place in 5 ml of Aquasol and the activity was datemmed by liquid scintillation counting. Carbon fixation was calculated by the method in J. D. H. Strickland and T. R. Farsons, A Practical Handbook of Seawater Analysis, Fish. Res. Bd. Canada (1972).
5. Surface water was collected and placed in 500 ml glass incuba tion bottles after which $\mathrm{Ne}_{2} \mathrm{PO}_{4}$ was added to obtaira concenter tions of $0.00,0.25,0.50$, or $2.00 \mu \mathrm{~g}$-atm $\mathrm{PO}_{4}-\mathrm{P} 1^{-1}$. Half the samples wexe poisoned with 1 ml of $2 \mathrm{H}_{\mathrm{K}} \mathrm{HgCl}_{2}$ solution. One ml of between 500,000 and $1,000,000 \mathrm{dpm} / \mathrm{ml}$ of carrier free ${ }^{32} \mathrm{P}$ phosphoric acid was added to the botties and the samples were incubated in situ. Fifteen ml subsamples were periodically removed from all bottles and filtered through Whatman GF/A glass fiber filters. Ten mls of filtrate wene pipeted into LSC vials and the ${ }^{32} \mathrm{P}$ activity was determined by Cherenkov radiation measuremnts with a liquid spectrometer (E. J. C. Curtis and I. P. Toms, In: Liquid Scintildation Counting, Heyden \& Sons, (1972); F. Fric and V. Palovickova, Int. J. App. Rad. Iso. 26, 305 (1975)). Plankton phosph.ete uptake rates were estimated from linear regression slopes of total phosphate uptake minus HgCl_{2} poisoned uptake vs time for R^{2} greater than 0.80 .
6. Water temperature and salinity were determined with a Becknatn RS 5-3 portable salinometer. Turbidities were analyzed with a Hach model 2100 A Turbidometer. $\sum \mathrm{CO}_{2}$ was measured with an Oceanographic International Corperation Total Carbon Analyzer model 0524.
7. Water samples were collected and immediately filtered through prewashed Whatman GF/A glass fiber filters and then placed in 500 ml nalgene bottles. One ml of $2 \% \mathrm{HgCl}_{2}$ solution was added to the sample after which it was placed on ice. All nutrients
were analyzed within 48 hours. Soluble reactive phosphate, nitrate, and nitrite were determined by the methods given in Strickland and Parsons (4).
8. Chiorophyll-a was determined by the method given in Strickland and Parsons (4). Phytoplankton taxonomy was determined by the technique of R. Holmes (U.S. Fish and Wildalife Serv. Spec. Rep. Fish, 433 (1962)).
9. R. H. Estabrook, M. S. Thesis; Florida State University, Tallahassee, Florida, 166p (1973); V. B. Myers and R. L. Iverson, Flovida Dept. Nat. Res. Publication, in press (1977); H. F. Bittakex, V. B. Myers, and R. L. Iverson, manuscript.
10. V. B. Myers and R. L. Iverson, manuscript.
11. Significant differences in species composition and size fraction exist between M. L. and E-I2 stations and Ock and Apal stations. The phytoplankton communities at stations M. L. and E-l2 had a greater proportion of individuals in the larger size fraction (35\% of total numbers had log cell volumes between 4.0 and 5.0) than did station Ock and Apal (15\% of total numbers were in this langer size fraction). Cyclotella meneghiniana was the dominant diatom at all stations and comprised 18 to 38 \% of the total phytoplankton cell numbers.
12. A stepwise regression method was used to enter independent variables into the model. The lower limit of the change of R^{2} for addition of a variable to the model was set at 0.05 . Solul le reactive phosphate was the first variable entered into
the model and it gave an R^{2} of 0.54 . Salinity was added next to the model and it incoeased the R^{2} by 0.10 . The other variables did not meet the conetraints of the method an: therefore were not entered in the model. The final regression model was:

$$
\text { P.P. }=32.1+48.4 \text { S.R.P. }-0.54 \mathrm{Sal} .
$$

where: P.P. is phytoplankton primary productivity in $\mu \mathrm{g} \subset \mathrm{l}^{-1} \mathrm{hr}^{-1}$; S.R.P. is soluble reactive phosphate in $\mu \mathrm{g}-\mathrm{atm} \mathrm{PO}_{4}-\mathrm{P} 2^{-1}$; and Sal. is salinity in parts per thousand. This final model was significant at $\propto 0.001$.
13. The high positive correlation coefficients between phosphate uptake and both chlorophyll-a $(r=40.83)$ and phytoplankton primary production ($r=+0.77$) during the summer suggests that: phytoplankton are the primary phosphate uptake fraction of the plankton in these coastal systems. This conclusion is consistent with results of J. L. Taft, W. R. Taylor, and J. J. Mccarthy (Mar. Biol. 33,21 (1975)), who found that phytoplankton were the main fraction taking up phosphate in the Chesapeake Buy.
14. J. H. Ryther and W. R. Dunstan (3)
15. Median phi values of 3 (125μ) were observed for sediment samples obtained from stations Apal-1A, M. L., and E-12.
16. L. R. Pomeroy, L. R. Shenton, R. D. H. Jones, and R. J. Reimold, Limnol. Oceanogr. Special Symp. Vol 1, 274 (1972).
17. Financial support was provided by the Florida Sed Crant Frogrem under NOAA contract 04-3-158-43. We thank. D. Menzel for commenting during preparation of the manuscript and R. Farriss for critically reading the mentuseript.

Figure 1 . Location of sampling station in the Northeastern Gulf of Mexico.

Table 1. Surmary of environmental, nutrient, and phytoplankton data. The first value under each parameter is the mean value of that paraneter for a given station and the second value is the standard deviation of the values. Temp is temperature, Salin is salinity, Turb is turbidity, and Pri. Prod. is phytoplankton primur. production.

Station	$\begin{aligned} & \text { Temp } \\ & 0_{\mathrm{C}} \end{aligned}$	Salin $\%$	Turb. FTU	Light 1y: hr-1	NO_{3}	$\begin{aligned} & \mathrm{NO}_{2} \\ & \mathrm{~atm} \end{aligned}$	PO_{4}	Pri. Prod. $\mathrm{mg} C \cdot \mathrm{~m}^{-3} \mathrm{hr}^{-1}$	Chi-a $\mathrm{mg} \mathrm{m}^{-3}$
E-22	29.4	26.2	3.15	25.5	0.32	0.01	0.04	6.00	0.61
	1.01	2.48	0.35	5.60	0.24	0.03	0.01	1.25	0.17
M. :	27.8	29.7	3.15	37.8	0.55	0.02	0.19	9.20	0.52
	1.78	3.53	0.49	3.73	0.10	0.02	0.04	0.58	0.21
0ck-1	28.2	4.20	4.97	37.9	1.83	0.05	0.37	30.8	2.14
	0.90	1.06	0.78	7.22:	0.37	0.01	0.07	2.57	0.41
0ck-2	28.2	10.3	4.93	37.9	2.24	0.12	0.36	26.4	3.00
	0.80	0.70	0.61	7.22:	0.83	0.05	0.09	4.74	0.51
Apal-1A	27.5	3.74	16.5	33.9	3.08	0.15	0.34	40.3	5.13
	1.19	2.58	. 8.96	9.17	2.63	0.16	0.08	10.7	1.12
Apal-7	27.5	11.7	11.7	36.9	3.55	0.21	0.40	36.7	4.11
	1.34	8.26	6.88	3.50	3.69	0.16	0.09	5.81	0.84

Table 2. Summary of analysis of variance of carbon uptake and phosphate uptake nutrient enrichment bioassays. The symbols under PO_{4} and NO_{3} indicate the statistical significince of the effect of that nutrient on either carbon uptake or phosphate uptake. An F test was used to determine the values N indicates no data, * indicates $d \leq 0.05$, and - indicates $\mathcal{\alpha} \geq 0.05$. When $\mathcal{C} \leq 0.05$ the effect of the nutrient additions was always stimulatory to the physiological process measured.

Station	Date	Carbon Uptake		Phosphate Uptake
		NO_{3}	PO_{4}	PO_{4}
E-12	6/03/75	*	*	N
E-12	7/18/75	-	*	N
E-12	7/12/76	-	*	*
E-12	9/10/76	$-$	-	-
M. L.	6/13/76	-	*	*
M. L.	7/03/76	-	*	*
M. L.	8/30/76	-	-	-
M. L.	9/22/76	-	*	-
Ock-1	6/17/76	-	-	-
Ock-1	7/28/76	-	*	*
Ock-1	8/30/76	*	-	- -
Ock-2	6/17/76	*	-	-
Ock-2	7/28/76	-	*	*
Ock-2	8/30/76	-	-	-
Apat-iA	9/02/74	*	*	N
Apal-1A	5/29/75	-	-	N
Apal-1A	7/11/75	-	*	N
Apal-1A	9/11/75	-	*	*
Apal-IA	9/15/75	-	-	-

Apal-1A	6:10/76	-	\star	\pm
Apal-1A	$6 \% / 4 / 76$	-	\star	*
Apal-1A	7/05/76	-	*	*
Apal-la	$8 / 15 / 76$	-	:	$\stackrel{\text { \# }}{ }$
Apal-1A	8/26/76	-	-	-
Apal-7	9/02/74	*	-	N
Apal-7	$5 / 29 / 75$	-	\cdots	N
Apal-7	7/1.1.75	\pm	*	N
Apal-7	9/11/75	3	-	-
ApaI-7	9/15/75	-	-	-
Apal-7	6/10/76	-	-	-
Apal-7	$6 / 24 / 76$	-	-	-
Apal-7	7/05/76	\pm	*	$*$
Apal-7	8/15/76	-	\pm	*
Apal-7	8/26/76	-	-	-

APPENDIX 3

LOSS OF RADIOCARBON IN IIRECT USE OF AQUASOL, FOR LIQUID SCINTILLATION COUNITIN OF SOLUTIONS CONTAINING ${ }^{1+} \mathrm{C}-\mathrm{NaHCO}$,

By Richab, I. Iverson, Hfanty F. Bittaner, and Vfhoon B. Myefls

Vol. 21, No. 5, September 1976
pp. 756-758
Made in the United Sfates of America
Copyright, © 1976 by The American Suciety of Limmongy and Oceathgriphly, Inc:

Loss of radiocarbon in direct use of Aquasol for liquid scintillation counting of solutions containing ${ }^{4} \mathrm{C}-\mathrm{NaHCO}_{3}{ }^{1}$

Absiract-Carbon-14 activity was lost when ${ }^{1 ' C-N a H C O}$ in aqueous solution whs added to Aquisol. Phenethylanine con be used to form carbunates which are stable in Aquasol in order to achieve complete reterntion of ${ }^{14} \mathrm{C}$ in the liquid scintillation cocktiol,
${ }^{1}$ Financial support was provided by the Florida Sera Grant Prograin under NOAA contract 04-3-158-43.

Premixed cocktails which accept aqueous samples have gained popularity for use in liguid scintillation counting of carbon-14 in phytoplankton productivity measurements. Aquisol, a product of New England Nuelear Corporation, was one of the first. cocktails developed for such use. Since Aquasol will accept up to a third of its wol-
une of aqueous sample, it is a simple process to standardize ${ }^{14} \mathrm{C}-\mathrm{NaHCO}_{3}$ solutions for primary productivity measurements by adding aliquots of dilutions of ${ }^{14} \mathrm{C}-\mathrm{NaHCO}_{3}$ solutions directly to Aquasol. After chemiluminescence caused by NaOH in the radiocarton solution (Strickland and Parsons 19:2) has decreased, ${ }^{14} \mathrm{C}$ activity of the soIution can be measured with a liquid scintillation spectrometer.

We observed lower than expected ${ }^{14} \mathrm{C}$ activity during standardization of ${ }^{14} \mathrm{C}$ NaHCO 3 solutions using Aquasol as the liquid scintillation cocktail. It is difficult to interpret pH measurements in a nonaqueous medium; however, the Aquasolwater emulsion was strougly acidic with pH -Hydrion paper. To assess the magnitude of the ${ }^{14} \mathrm{C}$ activity losses, we added $1.0-\mathrm{ml}$ aliquots of a $1: 50$ dilution of solution containing $1 \mu \mathrm{Ci}$ of ${ }^{14} \mathrm{C} \mathrm{mI}^{-1}$ as ${ }^{14} \mathrm{C}$ NaHCO_{3} to 10.0 ml of Acquasol in glass liquid scintillation vials: carbon-14 activity decreased with time to a value 36% less than the amount of activity initially added to the Aquasol (Fig. 1).

Rapid loss of radiocarbon from the cocktail immediately after addition of ${ }^{14} \mathrm{C}$ NaHCO 3 solution precludes immediate liquid scintillation counting as a solution to the problem. We added duplicate $\mathrm{I}-\mathrm{ml}$ volumes of the diluted ${ }^{44} \mathrm{C}-\mathrm{NaHCO}_{3}$ solution to $5-\mathrm{ml}$ and to $15-\mathrm{ml}$ volumes of Aquasol in glass Iiquid scintillation vials to test the effects of variation in Aquasol volume on retention of ${ }^{14} \mathrm{C}$. After 500 min , the sample containing 5 ml of Aquasol contained 40% less activity and that containing 15 ml contained 26% less activity than the amount initially added.

Phenethylamine reacts rapidly with CO_{2} to form carbamates which are stable in liquid scintillation cocktails (Woeller 1961). Phenethylamine absorbs 99.5% of a a ailable CO_{2} (Duncombe and Rising 1969) and is used as the CO, absorber in several methods where ${ }^{3} \mathrm{CO}_{2} \mathrm{CO}_{2}$ is captured in liquid scintillation cocktails (Peterson 1969; Srnith et al. 1972). We added 1.0 ml aliquots of the diluted ${ }^{14} \mathrm{C}-\mathrm{NaHCO}_{3}$ aqueous solution to 20 ml of redistilled

Fig. 1. Carbon-14 activity of an unechts solution of "C-NaHCO. in 10 ml of Aguasol (0) and in phenethylamine plus 10 ml of Aquasol (1). Error bars are $\pm 2 \sigma$ for each point ($N=2$).
phenethylamine in glass liquid scintillation vials.

The carbon diovide absorption capacity of phenethylamine is about 0.2 g (4.5 mmoles) per ml (New England Nuclear Corp. 1975). We used a quantity of phenethylamiue in excess of stoichiometric requirements to ensure rapid carbamate fornation. After adding 10.0 ml of Aquasol to the vials, we measured the ${ }^{14} \mathrm{C}$ activity of the samples with a Picker Iiquid scintillation spectrometer. Carbon-l4 activity was not significantly different over the experimental period (Fig. 1). In the phen-ethylamine-Aquasol cocktail it was stable at 25 h and has been reported stable up to 72 h in a phenethylamine-toluene-metbanol cocktail (Davis et al. 1975).

Unless scintillation grade phenethylamine is used, it may be necessary to redestill phenethylamine by flash evaporation before use to remove colored compounds that cause quenching during liquid scintillation counting (Francis and Hawkins 1967). Aquasol is a xylene-based cocktail. When phenethylamine is used in toluenebased cocktails, a small amount of methanol is added to the cocktail to aid in solubilizing the phenethylamine (Smith et al. 1972). Phenethylamine has greater trapping capacity than hyamine-hydroxide (Parmentier and Ten H1aaf 1969) and
canses less chemilurninescence than $\mathrm{N} a \mathrm{OH}$, which has been used to retain " C activity in liquid scintillation cocktails (Waite et al. 1973). Organic bases or orgainic base-containing compounds that have been used by other investigators to retain inorganic ${ }^{1+} \mathrm{C}$ in toluene-based liquid scintillation cocktails include Bio-Sol (Beckman), NCS tissue solubilizer (Amershatm/Se:ule), and monethylamine. Inorgatic ${ }^{\text {" }} \mathrm{C}$ retention of all premixed: liquid scintillation cocktails desigred to accept aqueous solutions shosuld be assessed before the cocktails are used for counting inorganic ${ }^{14} \mathrm{C}$. Through conversations with several investigators, we find that this is not widely understood.

Richard L. Iuerson
Henry F. Bittaker
Vernon B. Myers
Departnent of Oceanography
Florida State University
Tallahassee 32306

References

Davis, R. A., J. P. Shoyalter, and F. Kean, Ja. 1975. A sinuple methond for trapping aud mewsuring expired ${ }^{\text {th }} \mathrm{CO}$. Anal. Biochern. 64: $285-28\}$

Dincombe, W. C., and T. J. Risinc. 1969. Scintillation counting of "CO fromi in vitro systenus: \mathbf{A} comparison of trapping agents. Anal. Biocheta. 30: 275-979.
Frincis, C. E., and J. D. Hawhisis. .1967. Li quid scintillation counting of aqueous ${ }^{7} \mathrm{H}$ and ${ }^{14}$ C-protein solations at room temperatire. Int. J. Appl. Rudiat. Isot 18: 203-230.
New Exglaid Nuchehr Cohbomatios. 19.5. Catulog 1975.
Paratenter, J. H., ạd F. E. L. Ten Hanf. 1969. Developments in liquid scintillation courting since 1963. Int. J. Appl. Radiat. Lsot. 20: 305-334.
Peterson, J. I. 1969, A carbon dioxide collection accessory for the rapid combustion apparatus for preparation of biological sunuples for liquid scintillation andyyis. Anal. Biochem. 31: 204-210.
Smith, D. W., C. B. Flifridans, ase T. D. Brock. 1972. Technique for measuring ${ }^{14} \mathrm{CO}_{3}$ uptake by soil microorganisms in silu. Appl. Microbiol. 23: 595-600.
Sthecklind, J. D. H., ang. T. R. Parsons. 1972. A practical handhook of seavater analysis, 2nd ed. Bull. Fish. Res, Bd. Can. 167.
Watte, D. T., H. C. Duthre, and J. R. Matthews. 1973. A mote on two liquid scintilIation fluors useful for primary production work. Mydrohiology 43: 231-234.
Woelrer, F. H. 1961. Liquid scintillation counting of ${ }^{4} \mathrm{CO}_{2}$ with phenethylamine. Anal. Biochem. 2: 508-5II.

Submitted: 16 December 1975 Accepted: 7 April 1976
126.

APPENDIX 4

UPTAKE OE GLYCOLIC ACTE
 BY A MARINE BIVALVE

$B Y$

Dante A. DiDomenico
Richard L. Iversor

Department of Oceanography
Florida State University T'allahassee, Florida 32306

In Press: J. Experimental Marine Biology and Ecology

ABSTRACT

Glycolic acid was accumulated by in vitro preparations of gill tissue from the quahog clam, Mercenaria sp., by a process exhibiting diffusion kinetics. Carbon-14 from labelled glycolic acid was found in the lipid fraction of the gill tissue. Evolution of labelled carbon dioxide suggested the glycolic acid was metabolized in gill tissue.

Excretion and extracellular loss of metabolites by phytoplankton and macrophytes is a significant source of soluble organic carbon compounds in the sea (Parsons and Takahashi, 1973). Photosynthetically fixed carbon excreted by marine phytoplankton communities varies in magnitude, with increased proportion of fixed carbon excreted by communities growing under oligotrophic conditions (Anderson and Zeutschel, 1970; Thomas, 1971; Samuel, et al., 1971; Berman and Holm-Hansen, 1974). Glycolic acid is probably quantitatively the most important component of phytoplankton extracellularly released carbon (Hellebust, 1974). Algal and bacterial species exhibit variability in their ability to take up and use exogenous glycolate for growth. Bacterial species which took up.glycolate were unable to grow using glycolate as the sole carbon source but could netabolize it with greater efficiency than other organic acids, sugars, or amino acids taken up from solution (Wright and Shaw, 1975). Excreted glycolate may be reassimilated to serve as an energy source for phytoplankton populations during conditions limiting photosynthesis (Fogg, 1963).

Marine invertebrates, including mollusks, have been shown to remove dissolved organic compounds from solution, yet the uptake and significance of glycolic acid in the metabolism of marine animals has not been established. Six genera of marine mollusks, including Mercenaria mercenaria, removed amino acids from seawater (Stephens and Shinske, 1961). Sorokin and Wyshkwarzev (1973) reported uptake of ${ }^{1^{t}} \mathrm{C}$ - labelled algal hydrolysate by 15 species of marine invertebrates, including a bivalve mollusk. Glucose and glycine were taken
up from solution at low concentrations by Pisidiun, a fresin water bivalve (Efford and Tsumura, 1973). PequiEnat (1973) fourd sieniti cant uptake of labelled amino acids and glucose from sea water by differant organs of the mussel Mytilus edulic. He concluced that uptake of organic solutes would constitute a significant part of the diet of the m :ssel if continually supplied in the environment. Glucose can be renoved from solution in seawater and may be an important nutritional supplement for oysters (Gillespie, et al., 1964, 1966).

The ciliated epithelium of the bivalve gill plays a major role in the direct absorption of organic solutes. The gill eqithelium was one of the most active tissues involved with the uptake of dissolved amino acids and glucose in Mytilus edulis (Pequignat, 1973). Gills have been shown to exhibit an active role in the uptake of labelled glucose and amino acids in bivalves such as Mya arenaria (Stewart and Bamford, 1975), Crassostrea gigas (Bamford and Gingles, 1974) and Cerastoderma edule (Bamford and McCrea, 1975).

This investigation was designed to determine the capability am mechanism of absorption of glycolic acid from solution by gills of the bivalve Mercenaria sp. Experiments were conducted to determine whether or not glycolic acid was incorporated into the energy yield ing and biosynthetic pathways of the gill.

Expeximental organisms

The experimental organisms were specimens of the northern quahog, Mercenaria (Venus) mercenaria (Linne) and the southern quahog, Mercenaria campechiensis (Gmelin) or their hybrids ojtained from R.W. Menzel. Specimens of Mercenaria sp. (80 to 100 mm) were obtained several days prior to an experiment. Collections were planned over the period September to Februany so that seawater temperatures and salinities coincided as closely as possible to experimental conditions $\left(T=20^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}, \mathrm{S}=28.3^{\circ} / 00\right)$. Seawater temperatures at the time of collection varied less than $3^{\circ} \mathrm{C}$ from experimental temperatures. Salinity remained between 28 and 29 parts per thousand.

The bivalves were thoroughly scrubbed with a stiff brush and were rinsed with seawater before being placed in glass holding tanks containing aerated seawater. Salinity was adjusted, if necessary, by addition of distilled water. Water was changed daily and aninals were allowed at least 48 hours to acclimate to experimental conditions. Experiments were conducted in a Tenney Relialab Model gglou Environmental Room which controlled temperature to within $0.15^{\circ} \mathrm{C}$. q'issue preparation

Animals were taken from the holding tanks and opened by fracturing one valve on tho dorsal side immediately before an experiment. The anterior and posterior adductor muscles were severed with a clean stainless steel scalpel. Remaining portions of the valve were removed and the mantle was peeled back to expose the gills. The gill tissue was visually inspected and discarded if damage had occurred during opening.

Segments of gill t : ssue approximately $0.75 \mathrm{~cm}^{2}$ were dissected out using clean stainless steel surgical scissors and twe:zers and were transferred to a beaker containing 100 ml of artificial se. water (ASW) at the experimental temperature and selinity. Each animal yielded 8 to 12 gill tissue segments which were pooled witi segments randonly selected for each experiment to minimize effeots of individual variability.

Artificial sea water used in experiments was a modified Lynan and Fleming (1940) formula made with distilled water and membrane filtered before use. Its composition was: $\mathrm{NaCl}, 0.40166 \mathrm{M}$; MgCl . $6 \mathrm{H}_{2} \mathrm{O}, 0.05231 \mathrm{M} ; \mathrm{Na}_{2} \mathrm{SO}_{4}, 0.02758 \mathrm{M} ; \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.00993 \mathrm{M} ; \mathrm{NaCO}_{3}$, $0.00238 \mathrm{M} ; \mathrm{KCl}, 0.00891 \mathrm{M} ; \mathrm{H}_{3} \mathrm{BO}_{3}, 0.00042 \mathrm{M}$. Salinity was adjusted to $28.3^{\circ} / 00$ with distilled water. All unlabelled glycolic acid sol:tions were made using this ASW. Labelled sodium glycolate (S.A. = $116 \mathrm{~m}^{\mathrm{Ci}} \mathrm{mg}^{-1}$, Amersham/Searle) was prepared as a stock solution (1.0 H Ci ml-1) with glass distilled water and stored at $\mathrm{f}^{\circ} \mathrm{C}$.

Since fatty acids have been observed to stick to untreated gless surfaces (Testerman, 1972) experimental glassware was silicone coated with "Siliclad" (Clay-Adams, Inc.) to reduce the possibility of glycolic acid absorption onto the glass walls.

Accumulation of 14C-labelled glycolic acid

For each kinetic experiment a single segment of gill tissue was placed in a 30 ml siliconized beaker with 5 ml ASW containing a known concentration of unlabelled glycolic acid anc $0.1 \mathrm{ml}{ }^{14} \mathrm{C}$ labelled glycolic acid ($0.02 \mu \mathrm{Ci} \mathrm{ml}^{-1}$). Experiments were conducted with six different concentrations run simultaneously for different tine intervals. Triplicate samples were taken at each time period for each concentration.
133.

Aiter incubation, segnents were removed from the radioactive solution and xinsed trice by transfers to beakers of clean unlabelled ASH. Following the final rinse the segments were quickly frozen in siliconized glass vials held in an alcohol-dry ice mixture. 'hitur from end of incubation to freezing for each set of tripifcates averaged 1.5 minutes. Frozen samples were stored in a Revco Ultra Low freezer at minus $60^{\circ} \mathrm{C}$ until lyophilization. All segments were lyophilized within 72 hours after incubation and were stored in a dessicator until radioactivity assay.

The lyophilized samples were weighed in tared polycarbonate capsules (Teledyne-intertechnique) on an analytical balance and processed for liquid scintillation counting with a high temperature combustion technique (Peterson, 1969). This technique utilizes catalyst enhanced dry combustion at $600^{\circ} \mathrm{C}$, followed by collection of evolved $14 \mathrm{CO}_{2}$ with a phenethylamine based liquid scintillation cocktail in a spinning band collector. Composition of the cocktail Was: 430 ml redistilled toluene, 300 ml redistilled methanol, 270 ml redistilled (flash evaporated) B-phenethylamine, 50 ml distilled weter; 5.0 grams PPO and 0.5 grams POPOP per liter of cocktail.

Combustion of gill tissue was enhanced by addition of approxjmately 10 mg of highly combustible finely ground (Teknan Model A-10 Analytical Mill) lyophilized plant tissue (Thalassia testudinum) to each capsule. After combustion and collection of the ${ }^{14} \mathrm{CO}_{2}$ containing cocktail in scintillation vials, the vials were tightly capped with polyethylone lined snew down caps and kept in the dark at least 12 hours to reduce chen iluminescence caused by phenethylamine. Carbon - 14 activity was measured with a Picker Nuclear Liquimat 220 iquid scintillation spectrometer calibrated with the external standards channels ratio method.

Evolution of $\mathrm{I}^{4} \mathrm{CO}_{2}$

Gill segments were excised in the manner previously describer! and held in ASW until pre-incubation. Fre-incubation consister of incubation of all segments, including the controls, in a knowa concentration of ${ }^{14} \mathrm{C}$ glycolate solution for 60 minutes. After pre-incubation all controls were placed in a saturated HgCl_{2} solution for 15 minutes to poison the tissue.

The evolution of ${ }^{14} \mathrm{CO}_{2}$ from gill tissue was measured using a technique modified from Harrison et al., (1971). After pre-incubation, experimental samples were renoved from the labelled glyoolate solution and thoroughly rinsed in ASt before being placed in serum bottles containing 5 ml of unlabelled glycolate solution at the pre-incubation concentration. The HgCl_{2} poisoned controls were rinsed separately. The bottles were then sealed with a rubber stopper fitted with a center well and filter paper assenbly (flari. son et al., 1971). Duplicate samples and controls were used for incubation periods of $5,10,20,30,40$, and 60 minutes. Impedidt. ly before the end of each incubation period 0.2 ml B-phenethylarain was placed on the accordian folded filter papers with a syninge. At the end of each incubation period replicate samples and controles were poisoned by injecting 2 ml of saturated HgCl_{2} solution into the bottle. 10% HCL was added dropaise with a syringe to lowen the pH to below 3 to release CO_{2} from the incubation solution. After acidification the bottles were left for one hour to pemit absorption of ${ }^{14} \mathrm{CO}_{2}$. The filter paper was removed and placed in a solution of 10 ml Aquasol (New England Nucledr) plus 2 ml fresinty distilled B-phenethylamine for determination of carbon-ly activity
with a liquid scintillation spectrometer. Pheriethylamine is necessary to prevent loss of inorganic ${ }^{14} \mathrm{C}$ from Aquasol (Iverson, ct al., 1976). The gill segments were frozen and lyophilized to obtain dry weights.

An experiment was conducted to dssess uptake and minecalization of labelled glycolic acid by bacteria adhering to gill surfaces. falf the experimental organisms were treated with an antibiotic mix consisting of $200 \mathrm{mg} 1^{-1}$ Streptonycin (Nutritional Biochemicals Corp., Cleveland) and 159,000 units 1^{-1} Penicillin (Benzylpenicillin, K-salt, 1590 units mg^{-1}; Sigma Chemical Co., St. Louis). These concentrations are similar to those used by Anderson and Stephens (1969) to eliminate uptake of glycine by microbial epiflora present on marine crustaceans. I'welve hours before the experiment was to begin the experimental bivalves were thoroughly scrubbed and placed in a separate glass container with aerated membrane filtered sea water and antibiotic mix. After 1.2 hours in the filtered sea water and antibiotic mix the animals were opened and the experiment started. Antibiotics were added to all glycolic acid solutions of antibiotic treated animals during the course of the experiment.
Radioactivity in lipids fraction of gill tissue
Gill segments were pre-incubated for 30 minutes in a solution of ASW and antibiotic mix. Following pre-incubation the gill segmerts were transferred to a 14 C glycolate solution (0.01 , jCi ml-1, $855 \mu \mathrm{I}^{-1}$) containing the antibiotic mix. After incubation for two hours in the radioactive solution the tissue was quickly frozen by transfer to glass vials held in an alcohol-dry ice mixture. Segments were lyophilized and the lipids extracted by the method of Eligh and Dyer (1959). Approxinately 60 mg of freshly lyophilized
136.
tissue was homogenized with 5 mi of chloroform:methanol: watof (1:2:0.8) in a glass tissue homogenizer equipped with a teflon pestle (Thomas tissue grinder, 湤31-El5). The tissue was homogenized at row temperature ($25^{\circ} \mathrm{C}$) for 2 minutes using a ham held variable speed drill as a power source. The homogenate wat centrifuged and the supernatant decanted into a 30 ml glass separatory funnel. The supernatant was then diluted with equal volunas of chloroform and water to a final composition of 2:2:1.8 (chlonoform:methanol:water). The mixture was agitated after each additior. The lower chloroform layer was withdrawn into a tared mini LSC vial and evaporated to dryness under a stream of nitrogen at roon tempernture. The vials containing the lipid extruct vere further dried in an evacuated dessicator for 12 hours at room temperature. The vacum was broken by introduction of nitrogen and the vials were inmediatcty capped and weighed on an analytical balance. Total radicictivity of the tissue extract was detemined with a liquid scintillation spetrometer after addition of 4.5 ml scintillation cocktail containing 4 a BBOT dissolved in liter toluene. Extractions were perfoned on seawater spiked with labelled glycolate. Radioactivity remaining in the chloroform fraction after extraction averaged 0.1% of that added as spike. This value was much lower than that obteined after extraction of tissue incubated in radioactive glycolate.

Glycolic acid uptake as a function of time was determined over a wide range of concentrations in order to establish the Friod ruriog thirh initiril rate conditions existed. The soncentrations were chosen to approximate previously reported concentrations of glycolate in natural waters as well as those concentrations which could reasonably be expected to cause saturation effects. Gill segments were incubated in glycolic acid solutions ranging fron $2 \mu \mathrm{M}\left(164 \mathrm{\mu gl}^{-1}\right)$ to $133 \mu \mathrm{M}\left(10,171 \mu \mathrm{~g} \mathrm{I}^{-1}\right)$. The weight specific uptake of labelled glycolate over the range of weights of experinental tissue was constant due to the close agreement in size between tissue segments. Redioactivity was nomalized to lyophilized total tissue dry weight. Uptake increased linearly with time for pariods up to 90 minutes (Figure l). Uptake velocity as a function of concentration was also linear and exhibited no saturation effects. Houble logarithraic plots of uptake velocity vs. concentration were prepared to determine the nature of the uptake kinetics. If the relations are linear, the plots will produce straight lines whose slope is the order of reaction (Laiciler, 1965). The order with respect to concentration (n_{c}) is 1 while the order with respect to time (n_{t}) is 0 , indicating that the uptake process for glycolic acid under these experimental conditions is diffusion (Figure 2a, 2b). This method of plotting also allows an accurate estimate of the rate constant of the equation $v=k c^{n}$, which relates the rate of reaction to concentration. The y intercept (log v) is equal to log k and reveals $k=0.108$ (Figure 2a).

Micellar or molecular diffusion appear to be the frimary mectianisms for absorption of fatty acids and monoglycenides by intestinel epithelium in a variety of organisms (Hubscher, 1970; Kolinsket, 1975). Testerman (1972) found uptake of sons fatty acids exhibited saturation kinetics with two specios oz polychistes. Bouthmere and Southward (1970, 1972) obtained the same results with both pog- . onophores and polychaetes. Pinocytosis is another route for entry of lipids and fatty acids into the cell. Fasteels (1968) demonstreted pinocytosis of ferritin by gill cells of Mytilus edulis. However, the significance of pinocytosis in lipid transport into epitielium cells is questionable (Hubscher, 1970) and available data favor other means of transport.

The accumulation of labelled glycolic acid by the gill tissu: is not likely to be caused by bacteria adhering to the gill surface since bacteria exhibit saturation kinetics with respect to uptako and oxidation of glycolic acid at low concentrations siniler to those used here (Hobinson et al. 3 1973; Fright and Shah, 1975). Whe natural cleansing effect of gill cilia, use of filtered artificial sea water and shont incubation times further reduced bacterial ef. vets. Plate counts of smears of gill tissue on both Zobell and Nutrient agar media revealed low (<50 colonies) population of bacteria. Slopes of regression lines on the time course of ${ }^{14} \mathrm{CO}_{2}$ evolution with antibiotic treated vs. untreated Mercenaria sp. gill tissue showed no significant differences ($\mathrm{P}<0.05$) for M. Mercenaria (Figure 3) or for M. campechiensis (Figure 4).

Accumulation of a radioactive label is not definitive evidence of net accumulation of a compound because of the possibility of exchange diffusion or label exchange. There is evidence that marin.
jnvertebrates can excrete consiclerable quantities of orgenic matter and thus may exhibit no net gain even though there is accumalation of radioactive label (Johannes, et al., 1969 ; Johannes and Webb, 1965, 1970). Small particles or organic solutes can enter the ostia of the eulamellibranchian gill so that labelled material can be physically trapped rather than incorporated into gill tissue cells. Therefore, the metabolic significance of uptake of a compound where kinetics are diffusion controlled must be clarified. Stephens (1958) considered ${ }^{14} \mathrm{CO}_{2}$ evolution good evidence that a compound enters oxidation pathways - Experiments were performed demonstrating the evolution of ${ }^{14} \mathrm{CO}_{2}$ by M . mercenaria and M . campechiensis (Figure 3,4). The low activity of the control tissues eliminates the possibility that the ${ }^{14} \mathrm{CO}_{2}$ evolved was due to volatilization of absorbed glycolic* acid or NaHCO_{3} contamination. The CO_{2} evolved over the experinental periof represented approvimately 10 g of the total uptake of labelled carbon by gill tissue.

Glycolic acid taken up from the surrounding environment enters into the metabolism of Mercenaria sp. gill tissue although the mechanism by which this occurs is unknown. The metabolism of glycolic acid in phytoplankton and higher plants occurs by way of the glycolate oxidizing enzyme glycolate oxidase (higher plants) or Elycolate dehydrogenase (algae) (Merrett and Lord, 1973). Glycolate oxidase will oxidize lactate as well as glycolate; however, it is stereochemically specific for L-lactate and does not oxidize the enantioner D-lactate (Zeitefi and Ochod, 1953). Glycolate dehydrogenase oxifizes D-lactate preferentially to L-lactate (Nelson and Tolbert, 1970). Ne.ther of these two enzymes has been reported in higher organisms but there is the possibility that another enzyme is
in operation. The enzyme lactate dehydmogenase is comnonly found in higher animals and occurs in mollusks and M . mercenaria et low activities (Hammen, 1975). This enzyme catalyzes the conversion of lactate to pyruvate and in vertebrates is specific for bachate It will also act on glycolic acid to produce glyokylate. The eazymacts upon the stereochemically corresponding a-hylrogen of L-lactate, and glycolate (Rose, 1958; Johnson et al., 1965). Recent evidence indicates D-lactate specificity for the enzyme in mollusks (Famnen, 1969). The presence of lactate dehydrogenase provides a mechanism by which glycolate can be incorporated into animal metabolism after entering the cells. If lactate dehydrogenese can convert glycolic acid to glyoxylate, then through the transamination reaction posituLated by Hochachka et al. (1973) glycolic acid can be included into amino acid metabolism and ultimetely into the tricarboxylic: acid cycle (Figure 5). A mechanism similar to this mey occur irt marine bacteria (Wright and Shah, 1975).

Another mechanism for inclusion into oxidation pathwiys wo:ld be incorporation of glycolate into the complex system of lipid metabolism. Bivalves can synthesize fatty acids from acetate ard some may incorporate it into such components as the sterol fraciion, although evidence for the latter pathway is contradictory (Tamure et di., 1964; Walton and Pennock, 1972; Voogt, $1975 \mathrm{a}, \mathrm{b}$). Since glycolic. and acetic acids are chemically similar, experiments were conducted to determine if glycolic acid was incorporated into the lipid fractions of the gill tissuc. Lipid extracts of tissue incubated in a glycolic acid solution with the antibiotic mix showed incorporation
of label into the lipial fruction (Table 1). Incorporation occurred after uptake of the compound from solution for a short period (2 hours), a method which differs from the more popular method of injecting a compound of high specific activity direstly into the arimal and waiting a considerably longer period before extraction. This may explain the low specific activity of the lipids fraction. Uptake of glycolic acid and evidence of its inclusion into oxidative and biosynthetic pathways of Mercenaria sp. gill tissue have been demonstrated here. We do not suggest that glycolic acid is a primary carbon on energy source for the organisin. However, uptake of reduced carbon by higher organisms can be an important nutritional supplement (Stephens, 1968) which should be considered in quantitative studies on the transfer of energy through a marine cosystem.

ACKNOWLEDGEMENTS

This research was supported by the Florida Sea Crart progran under the National oceanic and Atmosphoric Administration contrect number 04-3-158-43. We wish to thank John Calder and David white for comments on the manuscript.

REFEPENCES

Andtrsor, J.W. and G.C. Stephens, 1969. Uptake of organic naterial by aquatic invertebrates. Vi. Role of epiflora in apparent uptake of glycine by marine crustaceans. Mar. Biol., Vol. 4, pp. 243-243.
son, C.C. arm R.b. Zeutsunt, 1970. Release of dissomed crganic matter by marine phytoplankton in coastal and offshore areas of the northeast Pacific Ocean. Limnol. Oceanozr., Vol. 15, pp. 402-407.

Eanford, D. P. and R. Gingles, 1974. Absorption of sugars in the gill of the Japanese oysuer, Crassostrea gigas. Comp. Biochem. Physiol., Vol. 49A, pp. 637-646.
E.mford, D.R. and R. McCrea, 1975. Active absorption of neutral and basic amino acids by the gill of the common cockle, Cenascodermat edule. Comp. Biochem. Physiol., Vol 50A, pp. 811-817.

Bomman, T. and O. Holm-Hansen, 1974. Release of photo-assimilated carbon as dissolved organic matter by marine phytoplankton. Mar. Eiol., Vol. 28, pp. 305~310.

Bligh, E.G. and W.J. Dyer, 1959. A rapid method of total lipid extraction ard purification. Can. J. Biochem. Physiol., Vol. 37, pp. 911-917.

Custell, J.D. and D.U. Trider, 1974. Preliminary feeding trials using artificial diets to study the nutritional requirements of oysters (Crussostrea virginica). J. Fish. Res. Board Can., Vol. 31, pp. 95-99.

Collier, A., 1959. Some observations on the respiration of the Anerican oyster Crassostrea virginica (Gmelin). Inst. Mar. Sci., Vol. 6, pp. 29-108.

Collier, A., S.M. Ray, A.W. Magnitzky and J. Bell, 1953. Effects of dissolved organic substances on oysters. U.S. Fish Wildi. Serv. E'ish. Bull., Vol. 54, pp. 167-185.

Effond, I.E. and K. Tsumura, 1973. Uptake of dissolved glucose and glycine by Pisicium, a freshwater bivalve. Can. J. Zool., Vol. 51, PP. 825-832.

Fogg, G.E., 1.963. The role of algae in organic production in aquatic environments. Er. Fhycol. Bull;, Vol. 2, p. 195.

Gillespie, L., R.M. Ingle and W.K. Havens, Jr., 1964. Glucose nutrition and longevity in oysters. Quart. Journ. Fl. Aced. Sci., Vol. 27, pp. 279-288.

Gillespie, L., R.M. Ingle and W.K. Havens, Jr., 1966. Nutritione? studies with adult oysters, Crassostrea virginica (Cmelin). State of Florida Board of Conserv. Tech. Ser. $\$ 5 \mathrm{~L}$.

Hammen, C.S., 1969. Lactate and succinate oxidoraductases in merine invertebrates. Mar. Biol., Vol. 4, pp. 233-238.

Fimmen, C.S., 1075. Succindte and lactore oyicoraduetases os bivalve mollusks. Comp. Biochem. Poysiol., Vol. 50B, pp. 407-412.

Harrison, M.J., R.T. Wright and R.Y. Morita, 1971. Method for measuring mineralization in lake sediments. Applied Microliol., Vol. 21, pp. 698-702.

Hellebust, J.A., 1974. Extracellular products. In, Algal Physiolosy and Biochemistry, edited by W.D.P. Steward, Oxford: Blackwell Scientific Publications, pp. 838-863.

Hochachka, P.W., J. Fields and T. Mustafa, 1973. Animal life without oxygen: basic biochemical mechanisms. Amer. Zool., Vol. 13, pp. 543-55.

Hubscher, G., 1970. Glyceride metabolism. In, Lipid Metabolism, edited by S.J. Wakil, Academic Press, New York. pp. 280-352.

ICler, D.R., T. Tamura and T. Wainai, 1964. Seasonal variationo in the sterol, fat and unsaponifiable components of scallop muscli. J. Fish. Res. Bd. Can., Vol. 21, pp. 1035-1042.

Iverson, R.L., H.F. Bittaker, and V.M. Myers, 1976, Loss of radiocarbon in direct use of Aquasol for liquid scintillation counting of solutions containing ${ }^{14} \mathrm{C}-\mathrm{NaHCO}_{3}$. Linnol. Oceanogr, Vol. 21, pP. 756-758.

Johannes, R.E., S.J. Coward and K.L. Webb, 1969. Are dissolved amino acids an energy source for marine invertebrates? Comp. Biochem. Physiol., Vol. 29, Fp. 283-288.

Johannes, R.E. and K.L. Webb, 1965. Release of dissolved amino acids by marine zooplankton. Science, Vol. 150, pp. 76-77.

Johannes, R.E. and K.L. Webb, 1970. Release of dissolved organic compounds by marine and fresh water invertebrates. In, Symposium on organic matter in natural waters, edited by D.W. Hood, Inst. Mar. Sci. Univ. Alaska, Dce. Publ. PI, pp. 257-273.

Johnson, C.K., E.J. Gabe, M.R. Taylor and I.A. Rose, 1965. Determination by neutron and x-ray diffraction of the absolute configuration of an enzymatically formed a-monodeuterio glycolete. J. Am. Chem. Soc., Vol. 87, pp. 1802-180t.

Kinckat, T., 1975 . The intestinc. In, Cell Menbrane Transport: Principles and Technigues, edited by A. Kotyk and K. Jaracek, Plenum Eress, New York, pp. 463-487.

Eaider, K.J., 1965. Chemical Kinetics. McGraw-Hill, Inc., U.S.A. 566 F .
 Kes., Vol. 3, pp. 134-146.

Merrett, M.J. and J.M. Lord, 1973. Givcoliate formation and metabolism by algae. New Phytol., Vol. 72, Pp. 751-767.

Nelson, E.B. and N.E. Tolbert, 1970. Glycolate dehydrogenase in green algae. Arch. Biodhem. Biophys., Vol. 141, Pp. 102-110.

Parsons, T.R. and M. Takahashi, 1973. Biological Oceanographic Processws. Pergamon Press, Sraunscriwetg, 186 pp.

Pasteels, J.J., 1968. Pinocytose et arthrocytose par l' epithelium branchial de Mytilus edulis. Z. Zellforsch. mikrosk. Anat., Vol. 92, pp. 339-359.

Feterson, J.I., 1969. A carbon dioxide collection accessory for the rapid combustion apparatus for preparation of biological samples for liquid scintillation analysis. Anal. Biochem., Vol: 31, pp. 204210.

Fequignat, E., 1973. A kinetic and autoradiographic study of the direct assimitation of amino acids and glucose by organs of the mussel Mytilus edulis. Mar. Biol., Vol. 19; pp. 227-244.

Fobinson, G.G.C., L.I. Eendzel and D.C. Gillespie, 1973. A relationship between hetenotrophic utilization of organic acids and bacterial populations in Nest Blue Lake, Manitoba. Limmol. Oceanogr., Vol. 18, pp. 264-269.

Fose, I.A., 1958 . The absolute configuration of dihydroxy-acetone phospinate tritiated by aldolase reaction. J. Am. Chem. Soc., Vol. 80, pp. 5835-5836.

Saruel, S., N.M. Shah and G.E. Fogg, 197l. Liberation of extraceliular products of photosynthesis by tropical, phytoplankton. J. Mar. Biol. Ass. U.K., Vol. 51, pp. 793-798.

Sorokin, Y.I. and D.I. Wyshkwarzev, 1973. Feeding on dissolved organic matter by some marine animals. Aquaculture, Vol. 2, pp. 141-148.

Soutinward, A.J. and F.C. Southward, 1970. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. Experiments on three species of Pogonophora. Sarsia., Vol. 45, pp. 69-95.

Southward, A.J., and E.C. Southward, 1972: Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. II. Uptake by other animals living in the same habitat as pogonophores, and by some lithorel Polychaeta. Sarsia, Vol. 48, fp. 61-68

Stephens, G.C.? 1968. Dissolved organic matter as potential somee of nutrition for marine congisms. Am. Zoologist , vot. 8 , pp. 95-106.

Stephens, G.C. and R.A. Schinske, 1961. Uptake of amino acids by marine invertebrates. Limnol. Oceanogr., Vol 6, pp. 175-181.
Stewart, M.G. and D.R. Bamford, 1975. Kinetics of alanine uptare by the gills of the soft shelled clam Mya arenaria. Conp. Biochem. Physiol., Vol. 52A, pp. 67-74.
Tamura, T., B. Truscott and D.R. Idler, 1964. Sterol metabolism in the oyster. J. Fish. Res. Bd. Can., Vol. 21, Pp. 1519-1522.
Tenore, K.R., M.G. Browne and E.J. Chesney, Jr., 1974. Polyspecies aquaculture systems: The detrital trophic level. J. Mar. Fies., Vol. 32, pp. 425-432.
Tenore, K.R., J.C. Goldman and J.P. Clarner, 1973. The food chain dynamics of the oyster, clam, and mussel in an aquaculture food chain. J. Exp. Mar. Biol. Ecol., Vol. 12, pp. 157-165.
Testerman, J.K., 1972. Accumulation of free fatty acids froin sea water by marine invertebrates. Biol. Buill., Vol. 142, pp. 160-177.
Thomas, J.P., 197I. Release of dissolved organic natter from natural populations of marine phytoplankton. Mar. Biol., Vol. Il, PP. 311-323.
Voogt, P.A., 1975a. Investigations of the capacity of synthesizing 3 B-sterols in Mollusca. XIII. Biosynthesis and coppositions of sterols in some bivalves (Anisomyaria). Comp. Bionhem. Physiol., Vol. 50B, pp. 499-504.
Voogt, P.A., 1975 b . Investigations of the capacity of synthesizing B-sterols in Mollusca. XIV. Bio-synthesis and compositions of sterols in some bivalves (Eulamellibranchia). Comp. Biochen. Physiol., Vol. 50B, pp. 505-510.
Walton, M.J. and J.F. Pennock, 1972. Some studies on the biosynthesis of ubiquinone, isoprenoid alcohols, squalene and sterols by marine invertebrates. Biochem. J., Vol. 127, pp. 471-479.

Wright, R.T. and N.M. Shah, 1975. The trophic role of glycolic acid in coastal seawater. I. Heterotrophic metabolism in scavator and bacterial cultures. Mar. Biol., Vol. 33, pp. 175-1s3.

7telitch, I. and S. Ochoa, 1973. Oxidation and reduction of glycolic and glyoxylic acid in plants. I. Glycolic acid oxidase. J. Biol. Chem., Vol. 201, pp. 707-718.

FIGURE LEGENDS

Figure 1. Uptake of glycolic acid at various concentrations as a function of incubation time. The error bars represent the mean of triplicate samples \pm two s.d. Linear regression lines calculated by the method of least square. $T=30^{\circ} \mathrm{C}$, hybrid bivalves.

$$
\begin{aligned}
& 3.56 \mu \mathrm{M} y=0.46+0.38 \times \mathrm{r}^{2}=0.93 \\
& 8.82 \mu \mathrm{M}=0.51+1.11 \times \mathrm{r}^{2}=0.93 \\
& 15.4 \mu \mathrm{M} y=0.26+1.49 \times \mathrm{r}^{2}=0.92 \\
& 68.0 \mu \mathrm{Hy}=0.26+6.65 \times \mathrm{r}^{2}=0.93 \\
& 133 . \mu \mathrm{M} y=-32+16.2 \times \mathrm{r}^{2}=0.95
\end{aligned}
$$

Figure 2. Double logarithmic plots of uptake velocity vs. concentration. The slope represents the order of reaction n.
(A) The order with respect to concentration, n_{c}. Uptake velocities calculated from slope of regression line of uptake vs. tine at each concentration (Figure I). $y=-0.967+1.00 \times, r^{2}=0.99 n_{c}=1$
(B) The order with respect to tine, n_{t} : Uptake velocities at each time during an experiment for a single concentration of glycolic acid. The logarithm of the rate at each time is plotted against the logarithm of the concentration of glycolic acid in the tissue at that time. Each point represents the mean rate of three replicates. © $3.56 \mu \mathrm{M}$, $08.82 \mu \mathrm{M}$, $015.4 \mu \mathrm{M}$, A68.0 $\mu \mathrm{M}$, A133. $\mu \mathrm{M}$.

Figure 3. Evolution of labelled carbon dioxide by M. mercenaria. No signiticant difference between slopes of regression lines for antibiotic treated vs. untreated tissue ($p<0.05$). $\mathrm{I}=20^{\circ} \mathrm{C}$ ountreated tissue, Aantibiotic treated tissue $0 \mathrm{HgCL} \mathrm{I}_{2}$ poisoned control tissue.

Figure 4. Evolution of labelled carbon dioxide by M. campechiensis. No significant difference between slopes of regression lines for antibiotic treated vs. untreated tissue ($\mathrm{p}<0.05$). $\mathrm{T}=20^{\circ} \mathrm{C}$ ountreated tissue, Aantibiotic treated tissue DHgCl 2 poisoned control tissue.

Figure 5. Possible mechanism for inclusion of glycolic acid into bivalve metabolism and evolution of labelled carbon dioxide.

1 lactate dehydrogenese catalyzed reaction.
2 transaminase reaction postulated by Hochachka (1973). 0 unlabelled a carbon of glycolic acid.

- labelled carboxyl carbon of glycolic acid.

TABLE 1.

Radioactivity in lipid fraction of gills. M. campechiensis

Number of Samples
Radioactive precursor
Specific activity
Dose
Concentration
Incubation time
Lyophilized weight
Total lipids
(\% Dry wt.)
Radioactivity in lipid fraction

6
sodium glycolate-1-14 C
$116 \mu \mathrm{Ci}^{\mathrm{mg}}{ }^{-1}$
$0.10 \mu \mathrm{Ci} \mathrm{mI}^{-1}$
855 ug $^{-1} \mathrm{HOCH}^{2} \mathrm{COOH}$
2 hours 365.7 mg.
27.49 mg.
7.52%
$51 \mathrm{dpm} \mathrm{ma}^{-1}$

$$
\begin{aligned}
& \text { OURMO ADD } \\
& \text { coo: } \\
& \text { GYCOK } A C D=1 \text { andaic } A C D \\
& \begin{array}{l}
0 \mathrm{CHOH} \\
0 \mathrm{COOH}
\end{array} \\
& \begin{array}{l}
\text { ocho } \\
\text { ocoor }
\end{array}
\end{aligned}
$$

VI. Detritus: Micro- and Macro-particulates

Introduction

In his review of the importance of organic matter in the marine environment, Perkins (1974) pointed to a considerable lack of knowledge concerning the fate and importance of macroscopic organic particulate matter in estuarine and coastal systems. Such matter often has its origin in terrestrial areas; subsequent transport, deposition, decomposition, and utilization by various organisms is not well understood. Allochthonous forms of plant litter can be of importance to the energy budget of aquatic systems; this function, however, has been more fully treated in freshwater habitats than estuarine and coastal areas (Willoughby, 1974).

According to Odum and de la Cruz (1963) and Darnell (1967 a and b), the term "detritus" applies to various forms of biogenic material undergoing microbial decomposition. Lenz (1972) considered detritus as particles between 1 and $300 \mu \mathrm{~m}$, accounting for about 90% of the particulate matter in coastal systems. Odum and Heald (1975) have reviewed the concept, emphasizing that organic detritus includes freshly dead bodies of plants and animals through the finely disintegrated particles and sorbed materials such as bacteria, fungi, protozoans and dissolved organic and inorganic compounds. They noted the annual production (tons per acre) of plant detritus which provides energy for shallow estuarine systems.

The degradation (and subsequent utilization) of organic detritus can be extremely complex, depending on the specific environmental variables involved (Perkins, 1974). Generally, the breakdown of leaf litter includes rapid leaching of soluble constituents (amino acids, sugars, aliphatic acids, etc.; Nykvist, 1959, 1962, 1963; Kaushik and Hynes, 1971;

Willoughby and Archer, 1973), and subsequent colonization by bacteria and fungi (Jones, 1973). This, in addition to various mechanical stresses, eventually leads to a physical breakdown of the leaf matter to smaller particles (Willoughby, 1974). Such particles can then be reworked, aggregated in the form of fecal pellets, etc., and repeatedly run through the system (Odum and Heald, 1975).

During intermediate stages of microbial leaf colonization, leaf litter forms a transient form of microhabitat that is capable of supporting various forms of aquatic organisms. Kaushik and Hynes (1971) found that amphipods (Hyalella azteca, Gammarus lacustris) and an isopod (Asellus communis) consume leaf matter, showing distinct preferences for certain forms of leaves. Odum and Heald (1972) noted that the amphipod Melita nitida grazes on the microbial biota of mangrove leaves, and that M. nitida and the xanthid crab Rhithropanopeus harrisii consume leaf fragments. Although it is widely assumed that much of the utilizable energy resource of such detritus is derived from the microbial component (Newell, 1965; Kaushik, 1969; Odum and Heald, 1972), the ability to digest cellulose has been demonstrated in at least one amphipod (Orchestia gammarella) by Wildish and Poole (1970). Adams and Angelovic (1970) found that gastropods (Bittium varium), crustaceans (Palaemonetes pugio) and polychaetes (Glycera dibranchiata) can assimilate Zostera detritus, and that \underline{P}. pugio and \underline{B}. varium derived more nourishment from the detrital substate than from its associated bacteria. Considerable amounts of vascular plant detritus are found in the digestive tract of various organisms such as mussels, harpacticoid, cyclopoid, and calanoid copepods, mysids, cumaceans, isopods, decapods, and various forms of fishes (Pennak, 1953; Darnel1, 1958; Tagatz, 1968; Odum and Heald, 1972;.Carr and Adams, 1973). Although the nutritional
significance of detritus of various sizes in estuarine systems remains obscure, the potential importance of such material as a direct and indirect source of food for complex food webs cannot be underestimated.

The Apalachicola Bay System (Fig. 1) is a shallow, barrier island estuary in north Florida that is physically dominated by the Apalachicola River (Livingston, 1974; Livingston, 1975; Livingston et al., 1975). This river system is composed of a series of interlocking marsh, swamp, and riverine habitats that empty directly into Apalachicola Bay. The current structure, salinity, nutrient, and detritus regimes of the bay system have been directly associated with river function (Livingston, 1974; Livingston et al., 1974). According to a recent (1970) survey of the Apalachicola River basin by the Florida Division of Forestry (George Reinert, personal communication), there are approximately 253,000 acres of wetland forest (including stream margins, deep swamps, and bay heads). Clewell (1977) has described the terrestrial plant associations in the Apalachicola Valley. The dominant species in the flood plain are as follows:

Sand bars
Black willow (Salix nigra)
Cottonwood (Populus deltoides)
Sycamore (Platanus occidentalis)
River banks
River birch (Betula nigra)
Ogechee-tupelo (Nyssa ogeche)
Alder (AInus serrulata)

Natural levees

Southern magnolia (Magnolia grandiflora)

Swamp-chestnut oak (Quercus prinus)
Spruce pine (Pinus glabra)
Ironwood (Carpinus caroliniana)
Water oak (Quercus nigra)
Sweetgun (Liquidambar styraciflua)
Low terraces
Overcup oak (Quercus Iyrata)
Water hickory (Caryantomentosa aquatica)
Diamond-leaf oak (Quercus laurifolia
Sweetgun (Liquidambar styraciflua)
Ash (Fraxinus sp.)
Sloughs and oxbow ponds
Bald cypress (Taxodium distichum)
Water tupelo (Nyssa aquatica)
A complete list of the terrestrial flora appears in Table 1. According to Clewell (personal conmunication), many of the deciduous species lose leaves during late fall and winter months. This coincides generally with periods of river flooding.

This portion of the study was designed as a preliminary estimation of seasonal patterns of river-derived detrital influx into the Apalachicola Estuary.

Methods and Materials
Macroparticulate matter was sampled with otter trawls (16 foot; 3/4 in. wing mesh, $1 / 4$ in cod end mesh liner) drawn at speeds of $2-2.5$ knots at monthly intervals (from January, 1975 to the present). Repetitive two minute traw tows were made at the following stations (Fig. 1):

```
    1 (7 samples)
    1 a (2 samples)
    l b (2 samples)
    1 c (2 samples)
    1 ( (2 samples)
    l e (2 samples)
    2 (2 samples)
    3 (2 samples)
    4 (2 samples)
    5a (2 samples)
    5 (7 samples)
```

This amounted to 64 minutes of trawling at representative stations in the bay each month. Detritus was returned to the laboratory where it was sorted, identified to (plant) species, and dried at $100^{\circ} \mathrm{C}$ for 24 hours. Where no identification to species was possible, the material was sorted to type (i.e., benthic macrophyte debris, leaf debris, wood debris). These data were then entered into the interactive computer system which gave monthly totals (Table 2) for 22 minutes of sampling (a total of the dry weight figures per trawl tow for each of the 11 sampling areas). These were characterized as total detritus (Totdeb), total wood debris (Woodeb), total leaf debris (Leadeb), total benthic macrophyte debris (Benmac), and individual totals for each species of tree or benthic macrophyte.

Microdetritus was taken at monthly intervals from August, 1975, to the present. Samples were collected at Station 7 (near the mouth of the Apalachicola River, surface and bottom, and at Station 8, about 1.5 km . from the mouth of the Little St. Marks River (middepth). Samples were generally taken as close to low tide as possible, although some collections at Station 8 were made shortly after low tide due to the shallowness of the
water. Odum and Heald (1975) found that much of the exported detritus in the North River (Florida) was in the form of particles between 50 and 350_{μ} in size. Accordingly, between 250 and 1000 liters of river water were pumped through a series of standard mesh sieves ($45 \mu, 88 \mu$, $125 \mu, 250 \mu, 500_{\mu}, 1.0_{\mathrm{mm}} 2.0_{\mathrm{mm}}$). Detritus was washed from each sieve into separate glass vials and preserved in a 3% mercuric chloride solution to inhibit bacteriological decompositon.

In the laboratory, each sieve fraction was filtered onto preweighed, pre-combusted glass filter pads and oven dried at $105^{\circ} \mathrm{C}$ for 48 hours to determine dry weight. Ignition of the sieve fractions and filters in a muffle furnace for 1 hour at $550^{\circ} \mathrm{C}$ (Heald, 1969) allowed determination of the ash-free dry weight. Weight loss after ashing was used to estimate total organic content although such loss does not constitute the true (total) organic content and remains an estimate.

The shortcomings of these methods of collection are recognized. Otter trawling is a very approximate way to sample detritus, and the trawling patterns could have caused a sampling bias when extending the data for baywide estimates. The macroparticulate data are therefore highly conservative and are most valuable with respect to qualitative temporal changes of individual constituents and the spatial distribution of these components. The microdetrital analysis was problematic due to inadequate cross-sectional analysis (length and depth) of the river and the low (monthly) sampling frequency. These data should be construed as conservative since nothing below 45μ was sampled. Thus, the data tend to be highly conservative with respect to mass flows in time. Results and discussion

Results of the macrodetrital sampling program are shown in Fig. 2 and

Tables 2 and 3.
The qualitative and quantitative aspects of detritus composition appear to be related to spatial factors with certain common relationships appearing within various groups of stations. Detritus at stations in uppland portions of the bay ($5 A, 6$) was characterized by benthic macrophytes such as Ruppia and Vallisneria with lesser amounts of wood and leaf litter. On the other hand, river-dominated stations (2, 3, 4, 5) were largely represented by wood debris and leaf litter with relatively little detritus of benthic macrophyte origin. Leaf matter was contributed by numerous species of terrestrial plants which conmonly inhabit upland river and swamp areas. Dominant foms included Quercus, spp., Populus deltoides Liquidambar styraciflua, Nyssa aquatica, Betula nigra, and Acer rubum. Benthic macrophyte detrital matter was derived largely from Ruppia maritima, Ulva lactuca, Halodule wrightii, Vallisneria americana, and Gracilaria spp. Outer bay areas receiving river drainage (1, 1A, 1B) were characterized by lesser quantities of wood debris, leaf litter, and benthic macrophytes in nearly equal proportions. Outer bay stations which did not receive direct river runoff ($1 X, 1 E, 1 C$) were dominated by detritus of benthic macrophyte origin, notably Gracilaria foliifera, Halodule wrightii, and Ulva lactuca.

The data indicate that various forms of detritus of terrigenous origin occur in the bay, and that areas associated with Apalachicola River runoff are typified by seasonally variable concentrations of allochthonous leaf and wood matter.

In a qualitative and quantitative sense, the appearance of macroparticulate matter in the Apalachicola Estuary appears to be a function of river flow. River fluctuations during the sampling period (Fig. 2) re-
lected relatively high mean monthly values during the winter and spring of 1975 and 1977 with relatively low mean flow rates during 1976. Peak flooding occurred during January, February, March, and April of 1975 and March of 1977. During such periods, there were considerable increases in the leaf and wood matter found in the Bay (Table 3, Fig. 2). There was also an increase in benthic macrophyte debris at these times, although major shifts to such macrophyte detritus usually occurred during fall periods. This was probably due to kills of macrophytes as a function of reduced water temperature. The low levels of macroparticulate matter in the bay during 1976 coincided with the relatively low levels of mean river flow as well as reductions in the peak flooding levels. It would appear that both functions are operable in controlling the seasonal appearance of macroparticulate matter in the Apalachicola Estuary. During a given year, when river flooding exceeds 60,000 C.F.S., there was an increased level of allochthonous detritus in the bay during spring months. This led to a bimodal pattern of total macroparticulate detritus in the bay during such a year, with peaks occurring during spring and fall months. These data indicate that there is a direct relationship between river flooding and the appearance of macroparticulate matter in the Apalachicola Estuary, and that if such flooding does not reach a certain level, allochthonous detritus does not appear in the bay at any appreciable level.

The sieved fractions of detritus (the so-called microdetritus) found at the mouth of the Apalachicola River and one of its primary offshoots, the Little St. Marks River, are shown in \wedge and Fig. 2. Once again, river flow and flooding appear to be controlling factors. Moderately high levels of microdetritus appeared during the winter and spring of 1976.

This was followed during the subsequent year (March, 1977) by substantial increases in terms of concentration (mg / l) and total quantities of microparticulates. Unfortunately, the river flooding of 1975 was not sampled; consequently, there is relatively less information available to substantiate the relationship of river flow and microparticulates than in the previous (macroparticulate) analysis. However, the relatively high levels of microparticulates taken during the peak flooding of March, 1977 indicates that similar functional relationships are operational here. Mean river flow and peak river flooding conditions appear to play a critical role in the amount of microdetritus being delivered to the Apalachicola Estuary.

Although the absolute quantities of allochthonous organic matter associated with river flooding (i.e., almost 900 tons, ash free dry weight of microdetritus and about 126 tons, dry weight, of macrodetritus in March, 1977) appears to be substantial, the exact meaning of such figures in terms of energetic input to the bay is still under study. Associated problems with respect to flushing rates in the bay, import-export factors, and mass balance functions have not been analyzed. Also, as pointed out above, the methods used here were restricted in terms of scope and duration of sampling effort. While the figures given would be viewed as quite conservative with respect to total influx of river-derived organic particulate matter in the bay, the general pattern of detrital movement appears to be well established and is closely associated with upland vegetational associations and periodic flooding of the Apalachicola River.

Based on the above assumptions, work is now in process to delineate the functional significance of these findings. This will include a conplete statistical analysis of the data and the development of a compartmental model for a comparison of the energetic interrelationships
of the bay system. Although this analysis is still in a preliminary state, the data to date tend to corroborate the importance of the river (in terms of absolute flow rates and temporal patterning) to the Apalachicola Estuary. It would appear that the temporal sequence of upland flooding of this river system could provide a key link to the productivity of the bay system.

Literature Cited

Adams, S.V. and J.W. Angelovic. 1970. Assimilation of detritus and its associated bacteria by three species of estuarine animals. Chesapeake Sci. 11(4): 249-254.

Carr, W.E.S. and C.A. Adams. 1973. Food habits of juvenile marine fishes inhabiting seagrass beds in the estuarine zone near Crystal River, Florida. Trans. Am. Fish. Soc. 102(3): 511-540.

Clewell, A.F. 1977. Geobotany of the Apalachicola River region. In, Proceedings of the Conference on the Apalachicola Drainage System. Eds., R.J. Livingston and E.A. Joyce, Jr. Fla. Mar. Res. Publ. (in press).

Darnell, R.M. 1958. Food habits of fishes and larger invertebrates of Lake Ponchartrain, Louisiana, an estuarine cormunity. Publ. Inst. Mar. Sci. Univ. Texas. 5: 353-476. - 1967a. The organic detritus problem. In G.H. Lauff (ed.), Estuaries. Publ. Am. Assoc. Advan. Sci. 83: 374-375.
\qquad - 1967b. Organic detritus in relation to the estuarine system. In G.H. Lauff (ed.), Estuaries. Publ. Am. Assoc. Advan. Sci. 83: 376-382.

Heald, E.J. (1969). The production of organic detritus in a south Florida estuary. Ph.D. dis., Univ. of Miami, Coral Gables, Florida.

Jones, E.B.G. 1973. Aquatic fungi: Freshwater and marine. In Dickinson, C.H. and G.J.F. Pugh (eds.), Biology of Plant Litter Decomposition. Academic Press, New York. 2: 337-383.

Kaushik, N.K. 1969. Autumn shed leaves in relation to stream ecology. Ph.D. Dissertation, University of Waterloo, Canada, 188 p.
and H.B.N. Hynes. 1971. The fate of dead leaves that fall into streams. Arch. Hydrobiol. 68(4): 465-515.

Lentz, J. 1972. The size distribution of particles in marine detritus. In, Detritus and its role in aquatic ecosystems. pp. 17-35.

Livingston, R.J. 1974. Field and laboratory studies concerning the effects of various pollutants on estuarine and coastal organisms with application to the management of the Apalachicola Bay System (North Florida U.S.A.). Final report, State University System of Florida. Sea Grant Program (R/EA-1).
1975. Resource Management and estuarine function with application to the Apalachicola Drainage System (North Florida, U.S.A.). Contribution to the National Estuarine Pollution Report (E.P.A.). 35 p . , R.L. Iverson, R.H. Estabrook, V.E. Keys, and J. Taylor, Jr.
1974. Major features of the Apalachicola Bay System: Physiography, biota, and resource management. Florida Sci. 37(4): 245-271. , G.C. Woodsum, and J.E. Jernigan. 1975. An interactive computer program for analysis of comprehensive (long-term) field data. (unpublished report).

Newell, 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranch Hydrobia ulvae and the bivalve, Macoma baltica. Proc. Zool. Soc., London. 144: 25-45.

Nykvist, N. 1959. Leaching and decompositon of litter. I. Experiments on leaf litter of Fraxinus excelsior. Oikos 10(2): 190-211. 1962. Leaching and decomposition of litter. V. Experiments on leaf litter of Alnus glutinosa, Fagus sylvatica and Quercus robur. Oikos 13(2): 232-248.
1963. Leaching and decompositon of water soluble substances from different types of leaf and needle litter. Stud. Forest. Suecia 3: 1-31.

Odum, E.P. and A.A. de la Cruz. 1963. Detritus as a major component of ecosystems. A.I.B.S. Bull. 13: 39-40.

Odum, W.E. and E.J. Heald. 1972. Trophic analyses of an estuarine mangrove community. Bull. Mar. Sci. 22(3): 671-738.
1975. The detritus- based food web of an estuarine mangrove community. In, Estuarine Research, Vol. 1, pp. 265-286.
Pennak, R.W. 1953. Freshwater invertebrates of the United States. Ronald Press Co. N. Y.

Perkins, E.J. 1974. Decomposition of litter in the marine environment. In: Dickinson, C.H., and J.F. Pugh (eds.), Biology of piant Titter decomposition. Academic Press, New York.

Tagatz, M.E. 1968. Biology of the blue crab, Callinectes sapidus Rathbun, in the St. John's River, Florida. Fishery Bull. 67: 17-33.

Wildish, D.J. and N.J. Poole. 1970. CelluTase activity in Orchestia gammarella (Pallas), Comp. Biochem. Physiol. 33: 713-716.

Willoughby, L.G. 1974. Decomposition of litter in fresh water. In Dickinson, C.H., and G.J.F. Pugh (eds.), Biology of plant litter decomposition. Academic Press, New York. 2: 659-681.
and J.F. Archer. 1973. The fungal spora of a freshwater stream and its colonization pattern of wood. Freshwater Biol. 3(3): 219-239.
TABLE A Terrestrial Plants Known to Occur in the Apalachicola Valley (Clewell, 1977)
River.
Acer saccharinum L.
Carex cephalophora MuhT.
Carex frankii Kunth
Clematis viorna L.
Cornus amomum Mill.
Corydalis flavula (Raf.) DC.
Cryptotaenia canadensis (L.) DC. rare
Dentaria laciniata Muhi.
Helianthus strumosus L.
Hypericum frondosum Michx.
Impatiens capensis Meerb. rare
Lysimachia ciliata L. rare
Nemophila aphy1la (L.) Brummitt
Scrophularia marilandica L.
Sicyos angulatus t.
Treptocarpus 品 husae Nutt.

TABLE g . Flants Known in Florida only from the Blufis of the Apalachicola River, or Some of Them also from the Floodplain.

Actaea pachypoda Ell. rare
Arnoglossum atriplicifolium (L.) Pippen
Baptisia megacarpa Chapm.
Carex gracilescens Steud.
Cornus alternifolia L. f. rare
Croomia pauciflora (Nutt.) Torr. threatened
Cynoglossum virginiantm L. rare
Dioclea multiflora (T. \& G.) Mohr
Mepatica americana (DC.) Ker. rare
Hydrangia arborescens L.
Luzula acuminata Raf.
Luzula echinata (Smalt) F. J. Hermann
Matelea baldwyniana (Sweet) Woods.
Matelea flaviduia (Chapm.) Woods.
Phlox caralina L.
Silene polypetala (Walt.) Ferm. endangered
Smilacina racemosa (L.) Desf.
Trillium lancifolium Raf. rare
Uvularia sessilifolia L. rare
Veratrum woodii Robbins endangered
Verbesina alternifolia (L.) Britt.
Viola affinis LeConte
Woodsia obtusa (Spreng.) Torr.
Zizia aurea (L.) Koch

TABLE C. Plants known in Florida orily to the Apalachicola River Region, Excluding Those Known only on Bluffs and Floodplains.

Ampelopsis cordata Michx.
Arnica acaulis (Nalt.) BSP.
Aster plumosus Small threatened
Cuphea aspera Chapm. endangered
Cyperus aristatus Rottb.
Dicliptera brachiata (Pursh) Spreng.
Eragrostis glomerata (Halt.) Dewey
Eragrostis pectinacea (Michx.) Nees
Euphorbia telepioides Chapm. threatened
Gentiana saporiaria L .
Harperocallis flava HcDaniel endangered
lieliopsis minor (riook.) Moher
Heteranthera dubia (Jaca.) MacH.
Iva annua L.
Justicia americana (L.) Vahl
Justicia crassifolia (Chapm.) Small
Linum sulcatum Ridd var. harperi (Sma11) Rogers threatened
Macbridea alba Chapm. endangered
Oxypolis greenmanii Math. \& Const. endangered
Parnassia caroliniana Michx.
Parnassia grandifolia DC.
Phoebanthus tenuifolia (T. \& G.) Blake
Rhexia parviflora Chapplan. endangered
Scutellaria floridana Chapman. threatemed

TABLE C, concluded

Sphenopholis nitida (Bieler) Scribn.
Taxus floridana Nutt. endangered
Thaspium trifoliatum (L.) Gray
Torreya taxifolia Arn. endangered
Verbesina chapmanii Coleman threatened
Viola hastata Michx.
Vuika hirsutula Braierd
TABLE D. Noteworthy Plants Knomn in Florida from the Apalachicola River Kegion and Other Areas.
Adiantum capillus-veneris L. rare
Anemonella thalictroides (L.) Spach rare
Arnoglossum diversifolium (T. \& G.) Pippen threatened
Asclepias viridula Chapm. threatened
Aster spinulosus Chapm. threatened
Calamintha dentatum Chapm. threatened
Carex baltzellii Chapm. threatened
Conradina glabra Shinners endangered
birca paiustris L. rare
Frythronium umoilicatun Parks \& Hardin rare
Gentiana pennelliana Fern, endangered
Hedeome graveolens Chapm. endangered
Heterotheca flexuosa (Mash) Harms threatened
Hexastylis arifolia (Michx.) Small rare
Hypericuin lissophloes Adanls rare
jsoetes flaccida Schuttlw. threatened
Isopyrun biternatun (Raf.) T. \& G. rare
Laportea canadensis (L.) Weddell rare
i.iatris provincialis Godfrey endangered
Linum wastii Rogers endengered
lithospermum tuberosua Rugel rare
Magnolia ashei Weatherby threatened
Malaxis unifolia Michx. rare
Manisuris tuberculosa Nash threatened
Mediola viroiniana l. rare
Myriophylium laxum Shuctiw. thraztomed
TABLE D, concluded
Nolina atopocarpa Bartlett endangered
Pieris phillyreifolia (Hook.) DC. threatened
Pinckneya bracteata (Bartr.) Raf. threatened
Pinguicula ionantha Godfrey endangered
Pinguicula planifolia Chapm. threatened
Polygonella macrophylla Small threatened
Rhapidophyllum hystrix (Pursh) Wendl. \& Drude threatened
Rhexia salicifolia Kral \& Bostick threatened
Rhododendron austrinum (Smail) Rehder threatened
Sarracenia psittacina Michx. threatened
Senecio aureus L. rare
Smilax smallii Horong. threatened
Uvularia floridana Chapm. rare
Uvularia perfoliata L. rare
Warea sessilifolia Nash endangered
Xyris isoacifolia kral threatened
Xyris longisepala Kral rare
Xyris scabrifolia Harper threatened
Zephyranthes treatiae S. Wats. threatened

Table E. Plant Species, Golunon \& Scientific Terminology

Alder	Alnus serrulata (Ait.) Willd.
Ash	Fraxinus spp.
Birch, River	Betula nigra L.
Blackgum	Nyssa biflora Walt.
Bulrusi	Scirpus spp.
Cabbage palm	Sabal palmetto Lodd.
Cat-tail	Typha domingensis Fers.
Cord-grass	Spartina spp.
Cottonwood	Populus deltoides Marsh.
Cut-grass	Zizaniopsis miliacea (Michx.) Doell \& Aschers.
Cypress, Bald-	Taxodium distichum (L.) Rich
Gpress, Pond-	T. ascendens Brongn.
Dogwood	Cornus florida L.
Gallberry	Ilex glabra (L.) Gray
Hichory, Hockernut	Carytomentosa Nutt.
Water	C. aquatica (Michx. f.) Nutt.
Holly, American	Ilex opaca Ait.
Ironwood	Carpinus carcliniana Halt.
Magnolia, Southern	Magnolia granditicra L.
Maple, Red	Acer rubrum L.
seut Southern Sugar 	A. barbatum ilichx.
Needlerush	Juncus roeriariarius Sctieele
Oak, Cherman's	Quercus chapnianii Sary.
Diamond-leaf	Q. Taurifolia Mich:.
Dwarf-live	Q. geminata Still
Myrtic	Q. myrtitulia filld.

Table. E, continuied

Table E concluded

Table Econcluded	
Torreya	Torrey taxifolia Arn.
Tupelo, Ogeeche	Nyssa ogeche Bartr.
Water	N. aquatica L.
Willow, Black	Salix nigra Marsh.
Wiregrass	Aristida stricta Michx.
Yew, Florida	Taxus floridana Nutt.

Table 2. Summary of total (combined) macrodetritus taken from stations in the Apalachicola Estuary (1, 2, 3, 4, 5, 5A IA, 1B, TC, 1E, 1X) from January, 1972 through March, 1977. The figures represent the total of all mean values (combined data at each station) so that each monthly figure represents 112 -minute trawl-tows ($558 \mathrm{M}^{2} /$ station) or $6,138 \mathrm{M}^{2}$ of Bay bottom.

ciserat		\& \&	$\begin{gathered} 1 \therefore \pi \\ 7: 1+1 \end{gathered}$	Frifuml	74.471	741＊＊	7ワ0れめ1	7502 nl	750901	751001	751101	751301	740101	
\＃minty		$\begin{array}{r} 29.87 \\ 7+1.1 \end{array}$	$\begin{array}{r} 147.1 \cdot 1 \\ 7 \cdot .+1 \end{array}$	$\begin{array}{r} 1 \div 7,1 \\ 14 \end{array}$	$\begin{array}{r} 713.70 \\ 4.01 \end{array}$	$\begin{array}{r} 14 x_{1} .55 \\ 413.44 \end{array}$	$\begin{aligned} & 1,1.70 \\ & 3+4=74 \end{aligned}$	$\begin{aligned} & 2 ? 7.59 \\ & 44.144 \end{aligned}$	$\begin{array}{r} 4.79 .17 \\ 47.51 \end{array}$	$\begin{array}{r} 7 P 2.50 \\ 17.13 \end{array}$	$\begin{aligned} & 194.34 \\ & 44,99 \end{aligned}$	$\begin{aligned} & 45,54 \\ & 35,57 \end{aligned}$	$\begin{aligned} & 119.44 \\ & 41.34 \end{aligned}$	
－meptim		$\begin{aligned} & 1.11 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 4+\infty=i \\ & 1+0.7 \end{aligned}$	$\begin{aligned} & 11+17 \% \\ & 13.37 \end{aligned}$	$\begin{gathered} \\| n 7,1 " 1 \\ n, h \mid \end{gathered}$	$\begin{array}{r} 44 \cdot+1 \\ 7 \cdot 5 \cdot+5 \end{array}$	$\begin{gathered} 3<.7 \% \\ 4,30 \end{gathered}$	$\begin{array}{r} 153.71 \\ 11.02 \end{array}$	$\begin{array}{r} 745.74 \\ 30.77 \end{array}$	$\begin{array}{r} 189.71 \\ 9.717 \end{array}$	$\begin{array}{r} 116.30 \\ 77.32 \end{array}$	$\begin{aligned} & 17.10 \\ & 9+54 \end{aligned}$	$\begin{aligned} & 67.79 \\ & 23.46 \end{aligned}$	
－Frray		$\begin{array}{r} 19 y_{+} 1 \\ 1+7.14 \end{array}$	$\begin{aligned} & 4.9 .314 \\ & 14+11 \end{aligned}$		$\begin{array}{r} 141.74 \\ 1 .+14 \end{array}$	$\begin{array}{r} 21:-30 \\ 0.21 \end{array}$	$\begin{aligned} & 47.73 \\ & 24.04 \end{aligned}$		$\begin{array}{r} 172.24 \\ 13.04 \end{array}$	$\begin{array}{r} 527+63 \\ 74+04 \end{array}$	$\begin{aligned} & 43.64 \\ & 10.46 \end{aligned}$	$\begin{aligned} & \text { e2.9n } \\ & 12.7 \% \end{aligned}$	$\begin{aligned} & 4 H_{5}-\omega_{4} \\ & 1 h_{0}-1 \end{aligned}$	
ifinfe		14.15 14.11	$14+24$ 4.19	$\begin{array}{r} 4.7 .4-4 \\ 7.21 \end{array}$	$\begin{gathered} 4 h_{+}^{45} \\ 7 m_{+}+37 \end{gathered}$	$\begin{array}{r} 4 n c \cdot A \psi \\ 1 \subset+B T \end{array}$	4.36	34.95 4.91	．67	$\begin{array}{r} 56.43 \\ 2-5+5 \end{array}$	$\begin{array}{r} 3+22 \\ +14 \end{array}$	$\begin{aligned} & 25.22 \\ & 14.47 \end{aligned}$	$\begin{array}{r} \text { Z. } 71 \\ .94 \end{array}$	
Fratist	＋	14.85 7.64	14.15 3.54	$\begin{aligned} & 1+12+17 \\ & 1+7+1 \end{aligned}$		$\begin{array}{r} 4 \pm, \sum 1 \\ \mathbf{1}, 34 \end{array}$	$\begin{aligned} & 50=14 \\ & 15+14 \end{aligned}$	$\begin{array}{r}7.94 \\ \hline 4.4\end{array}$	$\begin{array}{r} 17.39 \\ 1.05 \end{array}$	$\begin{array}{r} 1.46 \\ .07 \end{array}$	$\begin{aligned} & 0.04 \\ & 0.06 \end{aligned}$	$\begin{gathered} -60 \\ 0.06 \end{gathered}$	$\begin{array}{r} 21 \cdot 由 3 \\ 7,56 \end{array}$	
キ15～＊くら		$1-8!$ － 10	$\begin{aligned} & 1.44 \\ & 1.7 \end{aligned}$	$\begin{array}{r} 3.51 \\ \gg 4 \end{array}$	1.813 -8.5	$\begin{array}{r} 10 .+1 \\ 0.415 \end{array}$	$\begin{gathered} 1+16 \\ 3+70 \end{gathered}$	$\begin{aligned} & \text { 14. } \mathrm{H}: \\ & 3.4 \end{aligned}$	$\begin{array}{r} 53.43 \\ 5.44 \end{array}$	$\begin{array}{r} 201.94 \\ 9.96 \end{array}$	$\begin{array}{r} 15.36 \\ 3.53 \end{array}$	$\begin{array}{r} 1.48 \\ .74 \end{array}$	$\begin{aligned} & 9.14 \\ & 3.15 \end{aligned}$	
Sompais		$\begin{aligned} & 0.19 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0,+i! \\ & A \\ & \hline \end{aligned}$	$\begin{aligned} & 4, r_{1}= \\ & 0, ~ i n t \end{aligned}$	$\begin{aligned} & 4)+7 t \\ & 4.75 \end{aligned}$	$\begin{aligned} & 4.0 n \\ & 1.0 n \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.80 \end{aligned}$	4.85 .94	$\begin{array}{r} 11.42 \\ 1.24 \end{array}$	$\begin{array}{r} 204.52 \\ 9.80 \end{array}$	$\begin{aligned} & 5.84 \\ & 1.30 \end{aligned}$	$\begin{gathered} 11.44 \\ 4.61 \end{gathered}$	$\begin{aligned} & 0.60 \\ & 0.00 \end{aligned}$	
		$4{ }^{3}+4.4$	P．41	$\begin{array}{r} 47.5 \pi \\ f, n^{4} \end{array}$	$57 .+7$	－47	$\begin{aligned} & 4, \quad 40 \\ & 14=00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.00 \end{aligned}$	$\begin{gathered} 6.00 \\ +00 \end{gathered}$	．19	$\begin{array}{r} 1.19 \\ 6.1 \end{array}$	$\begin{aligned} & 1.39 \\ & 2.90 \end{aligned}$	
4．4．${ }^{\text {a }}$ ，			$\begin{aligned} & .4 \\ & .10 \end{aligned}$	$\begin{gathered} 45 \\ +11 * \end{gathered}$	1.16 .11	24.44 .75	14.02 4.94	$\begin{aligned} & 9, R 6 \\ & 3,00 \end{aligned}$	6.77 .38	$\begin{array}{r} 55.38 \\ 2.63 \end{array}$	$\begin{aligned} & 6.34 \\ & 1.48 \end{aligned}$	$\begin{array}{r} 47 \\ .27 \end{array}$	－77	
¢015m			$\begin{aligned} & 4.20 \\ & 0.41 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 10.10 \end{aligned}$		$\begin{array}{r} 175,03 \\ 3.41 \end{array}$	$\begin{aligned} & 0.010 \\ & 0.00 \end{aligned}$	3.27 .44	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 9.04 \\ & 0.4 .4 \end{aligned}$	$\begin{aligned} & 4,0 n \\ & 4,0 n \end{aligned}$	$\begin{aligned} & 4.09 \\ & 0.76 \end{aligned}$	
－4．4：35		1．37	1.11 -1.0	.71 -104	－\quad＂：${ }^{\text {a }}$	－34	$\begin{array}{r} .50 \\ .15 \end{array}$	1.34 24	7.97 .46	$\begin{array}{r} 57.54 \\ 2.44 \end{array}$	$\begin{aligned} & 9+16 \\ & 2,46 \end{aligned}$	$\begin{aligned} & 6.01 \\ & 3.35 \end{aligned}$	$\begin{aligned} & 5.73 \\ & 1.74 \end{aligned}$	
		$\begin{aligned} & 1: 4 \\ & 1: 0 \end{aligned}$	1－5im	$\begin{aligned} & 4.47 \\ & 1.04 \end{aligned}$	$2+45$ +44	-85 84	$\begin{aligned} & 0.80 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.0 .41 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & -52 \\ & -12 \end{aligned}$	$\begin{aligned} & 4+15 \\ & 5+13 \end{aligned}$	1.04 .34	
F1＋95		3.17 .0 .7	1．4：	$\therefore 8$	． 72	4.001 9.00	－ 179	$\begin{aligned} & 0.00 \\ & 0.80 \end{aligned}$	$\begin{array}{r} 24.15 \\ 7.57 \end{array}$.37 .02	-78 -20	$\begin{array}{r} 1.08 \\ -50 \end{array}$	2.75 .09	
		11.419 11.97				$\begin{aligned} & 9+7 \Omega \\ & 0+7,09 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.94 \end{aligned}$	$\begin{aligned} & n_{i} n \theta \\ & n=0 n \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.06 \end{aligned}$	$\begin{gathered} 27+\ldots+4 \\ 6+3 \mathrm{H} \end{gathered}$	$\begin{aligned} & 6.00 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 0+0 n \\ & 0.0 n \end{aligned}$	
＿＊119		$\begin{array}{r} 73.17 \\ 1.64 \end{array}$	1．3n	$\begin{aligned} & 0.0 n \\ & 0.0 n \end{aligned}$	4． 1014 0.104	4.119 $=118$	$\begin{aligned} & \mathrm{U}=70 \\ & \mathrm{U}=10 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$		$\begin{gathered} 0.60 \\ 0.04 \end{gathered}$	$\begin{aligned} & 4.64 \\ & 0+04 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 4.4+1 \\ & 0.10 \end{aligned}$	
		2.4 .7 .4 .9	$\begin{aligned} & 13,10 \\ & 0,2+81 \end{aligned}$	$\begin{aligned} & 3.80 \\ & 4.06 \end{aligned}$	$\begin{aligned} & 6.4 n \\ & 4.17 \end{aligned}$	$\begin{aligned} & \therefore-0 n \\ & \therefore-9 n \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.70 \end{aligned}$	1.36 .26	$\begin{array}{r} 1.01 \\ .11 \end{array}$	$\begin{array}{r} 11.69 \\ -53 \end{array}$	$\begin{array}{r} 1.45 \\ .34 \end{array}$	$\begin{aligned} & 0.0 n \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.811 \\ & B .00 \end{aligned}$	
4．artw		1.12 .40	－ 0	$\begin{aligned} & 0 . m r \\ & 0, m i \end{aligned}$	5．14，	4.00 $0.0 n$	$\begin{aligned} & 4.90 \\ & 4.00 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 0.0 n \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 8.40 \end{aligned}$	$\begin{aligned} & 5.50 \\ & 1.37 \end{aligned}$	$1.4 n$.70		
N15：		3.11 .44	－193		$7+1$ $* 14$	1.94	$\begin{aligned} & 0.40 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.80 \end{aligned}$	$\begin{array}{r} 1+41 \\ +21 \end{array}$	$\begin{aligned} & 0.80 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1+21 \\ & +4 n \end{aligned}$	$\begin{aligned} & 0.08 \\ & 4.90 \end{aligned}$	
snorir：		$\begin{aligned} & 1.4 \\ & 1.4+4 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0 .+4 \end{aligned}$	． 78	－10	$4.3 n$ 4.34	$\begin{aligned} & 0.70 \\ & 0 . n 0 \end{aligned}$	$\begin{aligned} & 9.0 \theta \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 6.06 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.08 \end{aligned}$	$\begin{aligned} & +60 \\ & +27 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.00 \end{aligned}$	
－ELAPM		7.17 .17	．14，	． 96	．${ }_{*}^{\text {＊}} \times$	6．4． 4	$\begin{aligned} & 0=n+1 \\ & v=n 0 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	7.14 .44	$\begin{aligned} & 6.6 \\ & 0.0 .0 \end{aligned}$	401		
Sn：： 15		$\begin{aligned} & n_{4} n_{1}+1 \end{aligned}$	－ 4.1		T0． 0	4.75 4.79	$\begin{aligned} & 1,0.0 \\ & 1.90 \end{aligned}$	$\begin{aligned} & n, n 0 \\ & 0,00 \end{aligned}$	1.79 .14	$\begin{array}{r} 10.55 \\ .50 \end{array}$	$\begin{aligned} & 0.80 \\ & 8.80 \end{aligned}$	$\begin{aligned} & 0.74 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0 . \operatorname{nn} \\ & 0 . \operatorname{tn} \end{aligned}$	
		ī	＂．$\%$＂			\％	$11.0 n$ 1.0 .17	nonn	$\begin{aligned} & 0.90 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.04 \end{aligned}$	$\begin{aligned} & \theta=A n \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.0 .0 \end{aligned}$	
vrenul		\cdots	：1．41	10.74 7.3	$\begin{aligned} & +i n \\ & * i= \end{aligned}$		$\begin{aligned} & 13 . n \in 1 \\ & 4 . \end{aligned}$	$\begin{aligned} & 9, n i n \\ & 0,40 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0+00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 7.17 \\ & 3.97 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	
－\％A－		4．1．	－．．＊	$1-241$ 11.100	－\％	$\begin{aligned} & \because \therefore \% \\ & \because=10 \end{aligned}$	$\begin{aligned} & 4 . \mathrm{An} \\ & \mathrm{n} . \mathrm{AD} \end{aligned}$	n．0n $n+0 n$	0.70 0.00	$\begin{aligned} & 0.90 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 0.0 \text {. } \\ & 0.00 \end{aligned}$	
			4.1 1.	$\begin{aligned} & n, n f 1 \\ & 1 .[i n \end{aligned}$		$\begin{aligned} & 6.74 \\ & 10.7 .5 \end{aligned}$	$\begin{array}{ll} 1, n \\ 0, n \end{array}$	$\begin{aligned} & \text { H. } \mathrm{HO}_{0} \\ & \text { t. } 0 \mathrm{n} \end{aligned}$	$\begin{aligned} & 0.0+1 \\ & 6.0 n \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 9 .+\pi \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0+00 \end{aligned}$	
7＊＊＊			－$\quad 1$	$\because 4$	$\begin{aligned} & 7 \% \\ & .14 \end{aligned}$	$\begin{aligned} & \because+10 \\ & \because \cdot 1 t \end{aligned}$	$\begin{aligned} & 0.211 \\ & 0.120 \end{aligned}$	$\begin{aligned} & \mathrm{O}=\mathrm{r} \mathrm{H} \\ & \mathrm{O}_{-2} \mathrm{OH} \end{aligned}$	$\begin{aligned} & 0.0 n \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{array}{r} 1.11 \\ .+2 \end{array}$		

$\begin{aligned} & \text { SANPIt nc } \\ & \text { 7n.jont } \end{aligned}$	nctra 74074	カッツ゚ワ！	7－4101	10．atal	76u） 31	Thatal	Tautal	741001	741119	7nipli	770138
		y－ur	0.70	，4． 7.9	0.30	n． 00	0.00	0.00	0.00	0.00	0.00
4．0n	12．0．0	4．7．）	0.00	19	U．00	9.00	0.00	0.00	0.00	B．0n	n．7n
． 74	＊i） 7	0．130	45	n． 0 n	10.70	0.90	0.00	0.00	0.000	2.45	11
－い	－11		－0t	10：\％	$0.9 n$	0.710	0.	0.00	0.010		
9，か）	0.10	7．2） 1	9.70	9.76	0.47	0.07	0.110	0.00	$0-90$		0.90
15．10	0.100	te．tir	0.75	c－un	6．71	0.10	0.70	0．00			
143	．04＊	0.108	0.10	6．on	O．nn	0.70	0.07	0.00	0.00	1.70	1
$\rightarrow 7$	． 14	S．4．rn	4.97	0.10	$0.7 n$	9.70	0.00	0,00	0.00	－${ }^{1}$	
0 －10	0.40	0.84	4．${ }^{\text {d }}$	4． 20	0.76	0.09	0.70	111	0.00	0.00	0.47
n． 0_{0}	0．4 ${ }^{(1)}$	$\mathrm{H}, 10$	1．1；	C． 2.11	0.70	0.70	0.70	． 01	0.00	O．ne	
0.013	4.30	0.97	0.017	－${ }^{\text {ite }}$	0.76	0．40	0.00	0.00	0.00	0.76	0.01
0.10	0.16	0.000	0．0n	.10	0.00	9.70	\＃．0．0	0.00	0.10	．	
A，（1）${ }^{\text {a }}$	－N4	0.07	0.711	c．an	0.70	0.017	0.30	0.70	2．15	$0 \times n \mathrm{n}$	0.07
9．0．0	－1．4	4，en	0.10 m	4.98	4.60	0.70	0.90	0.06	．17	O．th	0.00
			0.70		0.00	0.90	0.00	0.00	0.00	3.22	1．47
O．7n	0.10	0．7n	0．1）	4＋37	0.40	0.00	0.00	0.00	0.00	.59	．15
0.17	4．10	\cdots	9．11								
－7	0.0 .0	9．3n	0.05	4.00	0.70	0.00	0.07	． 10	＋ 40	－ 24	－3／
． 25	0.90	－1．00	4．114	0.70	0.90	n， 0 \％	0.100	02	． 14	－14＊	
O．${ }^{\text {a }}$	0.50	9.21	0.00	a，\％	0．40	0.70	0.00	0.00	1．no	9.180 0.00	
O．un	0.30	9，7n	0.30	4.04	0.00	n．fn	0	． 00			
－． 010	0.75	0.08	0.70	$4 \cdot 70$	0.07	9.07	0，an	0.00	0.90	0．0n	O． 0 an
0.40	4．${ }^{1}$	9.30	9．19	\therefore in	0.008	0.00	0.010	0.00	9， 0 （	0.01	
0.36	0.110	14.76	0.40	1．30	0.008	9.70	$0.7 n$	0.00	0.00	2．11	－07
1，\％．an	4.0	$0.7 n$	junin	l：－ 10	0.70	\％． 09	0,00	0.00	0.00	， 1	
－f4	0.40	0.00	0.100	10.7	0.18	B． 000	0.08	0.00	0,00	． 19	$0{ }^{10}$
4 t	0.40	9.008	4.14	4，10	a，n\％	0.00	9.000	0.00	0.00		－$n 0$
0.009	0.30	0.00	0.91		U－90	0.00	$0.9 n$	0.00	0.06	0.00	0.05
0.69	7．14\％	0.40	a．nim	11．fin	0．40	0.00	0.00	n．0n	0.00	0.00	f．nt
	0.10	it．na	11.71	\cdots	8.80	n，00	0.00	$0 \cdot 100$	0.017	0.00	O．in
	H．0）	I．if	4.811	1．tan	0．円n		0.00	0	Q．		
							0.70	0.00	0.00	$4{ }_{4}$	n．nin
0.18	5．90	7.94	0.19	min	0.70	A．0n	0.90	0.00	0.00	－14	0.011
$8.4 n$	d．${ }^{\text {a }}$	9， 114	＋1］								
				\cdots	0.00	14．0n	$5.9 n$	0.00	0.009	7． 10	0．72
4．．．${ }^{\text {a }}$	u－	＂97＂	3.04	4，＋5	0.00	n．10	0.010	9．100	0.70	0.78	M．19
0.6	\％ 0							$0 \cdot 00$	0.00	0.00	0.70
¢．0．	0.41	0．0＂	9．0n	9070	9.00	0.10	0．0n	0.00	0.00	0.00	0.07
n．in	$\mathrm{A}=1 \mathrm{l}$	Hatic	0 －nt	＋if	0.40	0.7					
0.419	0．vM	＂．m＂	U03n	i－00	U．79	0.180	0．80	0.00 0.00	\％．nt 0.00	1.10 .80	0．0．0n
0.4	－ 0.04	Weat	0.10	C－JT	U．000	0.09	0.10				
－¢\％nnt				0．01．00	960trab	U．tannon	0.080900 0.00	0.00000	0.00090 0.00	13009 +02	$\begin{gathered} 0.0 \eta 9 m i n \\ 0.07 \end{gathered}$
9．＊＊	－J．it\％	－1．${ }^{+41}$	U．＇リ	－¢\％	U， 04	0.00					
Juntirn	C．0．judu	9．0．74		リ．turut	$4+606 n$ 0.70	$\begin{array}{r} 0.0 \text { minno } \\ n, n n \end{array}$	$\begin{array}{r} c .0,00 n \pi \\ 0.00 \end{array}$	$\begin{array}{r} \pi=0009 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$.72040 .17	-174613 .91
0.74	9＊）	－． 9	O， 0 a	Un＋m					0.100100	－24）009	0．norjno
	n．rasue $7 \times \mathrm{wa}$	9＋30．9n4		$1,0.4 .44$	$\begin{array}{r} 9+040 n 0 \\ 0, n n \end{array}$	0.00	$0 . n 1$	0.00	0．0n	． 15	0.71
$\begin{array}{r} 4.0 .110 \\ 0.90 \end{array}$		$14064 t$ 0.04	0.040×19 $0.9 n$	－0．4．89	$\begin{gathered} \text { a, vunng } \\ \text { fande } \end{gathered}$	$\begin{gathered} \text { U. Vnnmon } \\ n . m e n \end{gathered}$	$\begin{array}{r} 0 . n 00 n \theta \\ 0.0 n \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.001000 \\ 0.09 \end{array}$	-94090 .01	$\begin{array}{r} 61 \text { ing } \\ .04 \end{array}$
4．nnmits	974.10107	C． 1 隹：19n	－0＋30．1	0.0470		$\begin{array}{r} 0.0 n n n \pi \\ 0 . n \eta \end{array}$	$\begin{array}{r} 0.100407 \\ 0.70 \end{array}$	$\begin{array}{r} 0.0 .0000 \\ 0.00 \end{array}$	$0.0 n 9 \% 0$ 0.00	10.0 Onf 0.90	0．aninn $n+175$
n．＂1）	\cdots ¢000	0.74	71							0.00 man	
tenotyd			0．ouvin	$0.18 .10$	$\begin{aligned} & U=40 G A n \\ & 4 * \pi n \end{aligned}$	0.6 nnng $0=06$	0.00	0.00	$0 . \pi 9$	A， 7 A	n．${ }^{\text {an }}$
0.4 H	$10^{0.0}$	0.014	11.30								
$\begin{array}{r} 4+00 n 0 n \\ 9.07 \end{array}$	$\begin{gathered} n \\ i n \\ n \end{gathered}$	$\begin{array}{r} =7+\operatorname{Hn⿻}_{4} \\ \cdot 01 \end{array}$	$\begin{array}{r} 420.41 \\ -11 \end{array}$		$\begin{array}{r} 1,0000 n 0 \\ 0,4 n \end{array}$	$\begin{array}{r} 0 .+n+n+n \\ n, n o \end{array}$	$\begin{array}{r} 0.0 \text { genn } \\ 0.07 \end{array}$	$\begin{array}{r} 0.109 n 00 \\ 0.00 \end{array}$	$\begin{array}{r} 0.000 \cap 0 \\ 0+n \theta \end{array}$	$\begin{array}{r} 0.0 \text { onnon } \\ 0.0 \end{array}$	$n+30$
	0 0，＊5リンy		n．${ }^{\text {coundid }}$			リ．0ntan	10.90000	O．nomes	0．n07nn	n．ngnnm	$100002 n$ $0.7 n$
0.118	10.00	Marin	4，thr	r．	$0 \cdot \mathrm{OD}$	7.00	－ 0.00	0.00	0．00	0.	－
		asailint		10．04：34	1，1000no	4，unmmn	0．0409\％		$\begin{aligned} & 0.000000 \\ & 0.0 .0 n \end{aligned}$	$\begin{array}{cc} 0 & 0 . n+100 \\ n & 0.9 n \end{array}$	$7,71$
Gど）	） 11.10	リ．7	リ．1＇	$1.1+39$	0.40	H．	0.7	－ 0.00			

Gerrtis		$\begin{aligned} & \text { neltit } \\ & \text { 1/e } 1=1 \end{aligned}$	FW\％${ }^{\text {ats }}$
4＊ 4×1	Dain	toby	＇H． 11
	\％．10	0.318	．14
3FT＊15	44	．13	A．44
	40.4	± 0	．f4
－	9．3n	0.90	4.45
	17.7	4.04	＋3＊
tafesf	． 74	.10	7.84
	－19	a 30	． 76
53気5\％	0.00	0.47	7．6n
	0.90	0.10	． 14
rarcier	3.19	0.0	P．30
	7.57	Q，27	－01
［8119．）	$0.0 n$	0.30	4． 77
	0．0n	0×10	.17
－6itht	1．19	． 1%	M，A．A
	．1．4	＊）1	.17
－ativio	． 44	＋${ }^{+3}$	5×40
	．44	． 44	． 01
samest．	． 14	－10	4.44
	.71	． 60	－ 7 ？
EIftst	0.109	0.04	3.12
	5.97	0.70	.01
748： 7	9.39	0.45	3.84
	3． 1.3	0.30	－ 11
taxigs	－34	U．V4	2．44
	． 75	0.00	.71
S＊140	． 34	． 01	$\cdots 14$
	－ 0	－1．\downarrow	0.04
3fert	． 20	．4	409
	． 14	． 01	.61
－Arioren	0.79	い．ひい	1．41
		（1）．Il	＊${ }^{\text {a }}$
Fherion	．$\% 4$	＊1	1.74
	$0 \cdot 4$	． 11	＊${ }^{1}$
7146	n．nn	0.41	1.47
	$\cdots \mathrm{n}+\mathrm{n}$	0.10	． 0
senocr	n．${ }^{\text {n }}$	n．un	1.29
	0.09	0.60	． 0
2nichu	ก．20	0.40	1．73
	＊＊＊＊	9＋64	＊ 1
：04tuF	3.19	0.70	1.15
	n．in	0.00	.01
CNOPF	\cdots－ 7 \％	［iall	1.10
	－ 0 －	O．ito	．17
Crides	－nnman	n．thasu	， $7+49000$
	19．077	$0 . \mathrm{Ca}$	－ 01
140595	－n¢0）	9， 0 cutio	－14tisf
	n．in	0.114	， 0 S
Tア1\％	－0י4nnt	T． 0.0600	．$=19 \%$
		0.04	． 19
Tッムт	$\cdots+1 \times 498$	1，0090：	－$-24 n_{1}$
	9， 37	O．vo	－0＂
anpere		n．11：00¢	． 447078
	7． 1.7	0.00	－ 47
	$\therefore 08774$	6．010\％	－uminn
	0．\％	1．J！	－ 71

Table 3: Macrodetritus in the Apalachicola Estuary expressed in g , dry weight as wood debris $/ \mathrm{m}^{2}$, leaf debris $/ \mathrm{m}^{2}$, benthic macrophyte debris $/ \mathbb{m}^{2}$, total debris $/ \mathrm{m}^{2}$, and total (bay-wide) debris (Kg, tons) on a monthly basis from January, 1975 through March, 1977.

Wood debris
g , dry
Date
1/75
2/75
3/75
4/75
5/75
6/75
7/75
8/75
9/75
10/75
11/75
12/75
1/76
$2 / 76$
3/76
4/76
5/76
6/76
7/76
8/76
9/76
10/76
11/76
12/76
1/77
2/77
3/77

Leaf
debris

g,
dry wt. $/ \mathrm{m}^{2}$

0.01485
0.00173
0.01041
0.06957
0.06552
0.01418
0.00557
0.00010
0.00871
0.00052
0.00411
0.00044
0.01073
0.00069
0.00062
0.00147
0.00005
0.00010
0.00002
0.00010
0.00024
0.00075
0.01081
0.03384
0.00635
0.05005

Benthic macrophytes	Total detritus
g, dry wt. $/ \mathrm{m}^{2}$	$\begin{aligned} & \text { g, } \quad \mathrm{m}^{2} \\ & \text { dry wt. } \end{aligned}$
0.02104	0.03794
0.00804	0.01682
0.02754	0.0572
0.02950	0.11656
0.03427	0.25432
0.01418	0.01988
-	-
0.00634	0.03708
0.01992	0.06668
0.08602	0.12754
0.00711	0.03167
0.00373	0.01068
0.00796	0.01947
0.01546	0.04130
0.00897	0.01806
0.00168	0.04769
0.00576	0.02717
0.03576	0.04781
0.00527	0.00578
0.00102	0.00105
0.00271	0.00350
0.03423	0.03634
0.07300	0.08074
0.00937	0.03628
0.00724	0.08185
0.02451	0.03631
0.04707	0.21369

Total	Total
detritus	detritus
in Bay	in Bay
Kg, dry wt.	tons, dry wt.
20,321	22.4
9,008	9.9
30,636	33.7
62,428	68.7
136,218	149.8
10,648	11.7
-	-
19,860	21.8
35,711	39.3
68,310	75.1
16,965	18.7
5,721	6.3
10,426	11.5
22,122	24.3
9,673	10.6
25,542	28.1
14,552	16.0
25,609	28.2
3,095	3.4
567	0.6
1,876	2.1
19,466	21.4
43,242	47.6
19,431	21.4
43,839	48.2
19,447	21.4
114,452	125.9

Table 4 : Microdetritus (g) taken at 2 stations in the Apalachicola Drainage System $(7,8)$. Surface and bottom samples were taken on station 7 while mid-depth areas were sampled at station 8.

Date	Station	Sieve Fraction	New Dry Weight Per Sample	Net Ash-free Dry Weight Per 1000 L	\% Organics
8/75	7 T	\# 10	-	. 0032	-
		18	. 0006	. 0028	-
		35	. 0007	. 0036	-
		60	. 0030	. 0088	73.3
		120	. 0075	. 0132	44.0
		170	. 0096	. 0160	41.7
		325	. 0513	. 0488	23.8
				al $\frac{.0964}{} \mathrm{gm}$	
	7 B	\# 10	-	. 0020	-
		18	-	. 0028	-
		35	. 0007	. 0060	-
		60	. 0079	. 0116	36.7
		120	. 0096	. 0168	43.8
		170	. 0161	. 0220	34.2
		325	.1364	. 1204	22.1
				a 1.1816 gm	
	8 M	\# 10	-	-	-
		18	-	- .	-
		35	. 0005	. 0028	-
		60	. 0033	. 0088	66.7
		120	. 0049	. 0052	26.5
		170	. 0060	. 0088	36.7
		325	. 0299	. 0388	32.4
				7 7.0644	

Table: (continued)

Date	Station	Sieve Fraction	$\begin{gathered} \text { New Dry } \\ \text { Weight } \\ \text { Per Sample } \\ \hline \end{gathered}$	Net Ash-free Dry Weight Per 1000 L	\% Organics
9/75	7 T	\# 10	-	-	-
		18	. 0007	. 0044	-
		35	-	. 0016	-
		60	-	. 0008	-
		120	. 0017	. 0020	29.4
		170	. 0007	. 0028	.
		325	. 0037	. 0056	37.8
				Total.0043	
	7 B	\# 10	-	. 0032	-
		18	-	. 0016	-
		35	-	. 0020	-
		60	. 0025	. 0056	56.0
		120	. 0081	. 0096	29.6
		170	. 0043	. 0032	18.6
		325	. 0146	. 0188	32.2
				Total. 0440	
	8 M	\# 10	-	.	-
		18	-	-	-
		35	-	. 0020	-
		60	. 0003	. 0012	-
		120	. 0015	. 0004	6.7
		170	. 0038	. 0028	18.4
		325	. 0056	. 0084	37.5
				Total. 0148	
10/75	7 T	\# 10	. 0006	-	-
		18	. 0001	-	-
		35	. 0025	. 0060	60.0
		60	. 0072	. 0148	51.4
		120	. 0204	. 0292	35.8
		170	. 0267	. 0236	22.1
		325	. 2626	$\underline{.} 1064$	10.1
				Total. 1800	
	7 B	\# 10	. 0056	. 0176	78.6
		18	. 0047	. 0148	78.7
		35	. 0181	. 0612	84.5
		60	. 0286	. 0664	66.8
		120	. 0457	. 0668	36.5
	.	170	. 0950	. 0664	17.5
		325	. 5053	$\underline{.1620}$	8.0
			. 5053	Tota 7. 165	8.0
	8 M		-	-	-
		18	-	-	-
		35	. 0029	. 0054	65.5
		60	. 0059	. 0063	37.3
		120	. 0137	. 0174	44.5
		170	. 0204	. 0252	43.1
		325	.1211	. 0809	23.4
				Total. 1352	

Tabie 4 : (continued)

Date	Station	Sieve Fraction	New Dry Weight Per Sample	Net Ash-free Dry Weight Per 1000 L	$\%$ Organics
11/75	7 T	\# 10	. 0011	. 0010	45.5
		18	. 0006	. 0006	50.0
		35	. 0013	. 0012	46.2
		60	. 0043	. 0050	58.1
		120	. 0240	. 0190	35.4
		170	. 0703	. 0282	20.09.1
		325	. 4858	. 0884	
		\# 10	Tota 1	. 7434	9.
	7 B		. 0012 T	. 0031	91.7
		18	. 0007	. 0008	42.9
		35	. 0015	. 0017	40.0
		60	. 0080	. 0154	67.5
		120	. 0394	. 0386	34.3
		170	. 0602	. 0383	22.2
		325	. 5845	. 1785	10.7
			Total	. 2764	
	8 M	\# 10	Total	.27	-
		18	-	-	-
		35	. 0018	. 0028	77.8
		60	. 0057	. 0046	40.4
		120	. 0191	. 0070	18.3
		170	. 0174	. 0086	24.7
		325	. 0813	. .0382	23.5
			Total	. 06612	
12/75	7 T	\# 10	. 0004	. 0004	50
			-	-	5
			. 0021	. 00008	19
			. 0114	. 0058	25.4
			. 0420	. 0164	19.5
			. 1539	. 0214	6.9
			1.0426	. 0590	2.8
			Total	. 1038	2.8
	7 B	\# 10	. 0042	. 0086	71.4
			. 0025	. 0051	72
			. 0040	. 0072	62.5
			. 0148	. 0180	42.6
			. 0939	. 0349	13.0
			. 2345	. 0360	5.3
			1.4084	. 1044	2.6
			Total	.2142	
	8 M	\# 10	Total	-	-
			-	-	-
			-	-	- .
			. 0013	. 0006	23
			. 0026	. 0008	15.3
			. 0038	. 0018	23.7
			. 0175	. 0094	26.8
			Total	. 0126	

Table \qquad : (contined)

Date	Station	Sieve Fraction	New Dry Weight Per Sample	Net Ash-free Dry Weight Per 1000 L	\% Organics
1/76	7 T	\# 10	-	-	-
		18	-	-	-
		35	. 0028	. 0034	42.9
		60	. 0067	. 0077	40.3
-		120	. 0357	. 0212	20.7
		170	. 0735	. 0214	10.2
		325	. 5740	. 1121	5.3
				Total $\frac{.7658}{\text {. }}$	
	7 B	\# 10	. 0007	. 0074	71.4
		18	. 0015	. 0026	60.0
		35	. 0043	. 0066	53.4
		60	. 0128	. 0106	49.2
		120	. 0697	. 0415	20.8
		170	. 1107	. 0243	7.6
		325	. 8603	. 1310	5.2
	8 M			Total 1.2180	
		\# 10	. 0018	. 0018	50.0
		18	. 0033	. 0028	42.4
		35	. 0049	. 0044	44.9
		60	. 0163	. 0050	15.3
		120	. 0265	. 0030	9.4
		170	. 0118	. 0046	19.5
		325	. 1073	. 0420	19.5
				Total ${ }^{.0636}$	
2/76	7 T	\# 10	-	-	-
			-	-	-
			. 0010	. 0026	90.0
			. 0042	. 00077	64.3
			. 0228	. 0220	33.8
			. 0518	. 0223	15.1
			. 2437	. 0744	10.7
				Total $\frac{.1290}{}$	10.7
	7 B	\# 10	-	-	-
			. 0016	. 0040	87.5
			. 0035	. 0089	60.0
			. 0101	. 0186	64.4
			. 0461	. 0323	24.5
			. 1183	. 0323	9.6
			. 4532	. 1135	8.7
				Total 1.1096	
	8 M	\# 10	-	Total . 209	-
		18	-		-
		35	. 0006	. 0010	83.3
		60	. 0041	. 0038	46.3
		120	. 0152	. 0108	35.5
		170	. 0213	. 0158	28.9
		325	. 3542	. .1092	15.4
				Total .1406	

Table 4 : (continued)

Table _ 4 : (continued)

Date	Station	Sieve Fraction	New Dry Weight Per Sample	Net Ash-free Dry Weight Per 1000 L	\% Organics
5/76	7 T	\# 10	-	-	-
		18	. 0009	. 0014	77.7
		35	. 0009	. 0008	44.4
		60	. 0036	. 0054	75.0
		120	. 0132	. 0128	48.5
		170	. 0196	. 0146	37.2
		325	. 1697	. 0598	17.6
			Total	. 0948	
	7 B	\# 10	. 0012	. 0014	58.3
		18	. 0018	. 0032	88.8
		35	. 0041	. 0064	78.0
		60	. 0114	. 0156	68.4
		120	. 0247	. 0234	47.4
		170	. 0500	. 0330	33.0
		325	. 2562	. 0808	15.8
			Total	. 1638	
	8 M				-
		18	. 0007	. 0010	71.4
		35	. 0002	-	-
		60	. 0019	. 0020	52.6
		120	. 0049	. 0056	55.1
		170	. 0078	. 0078	50.0
		325	. 0446	. 0438	49.1
			Total	. 0602	
6/76	7 T	\# 10	. 0002		-
		18	-	-	-
		35	. 0009	. 0008	67
		60	. 0016	. 0016	75
		120	. 0028	. 0025	68
		770	. 0059	. 0040	51
		325	. 0501	. .0189	28
			Tota 1	. 0278	
	7 B	\# 10	-	-	-
		18	-	-	-
		35	. 0020	. 0024	60
		60	. 0022	. 0020	45
		120	. 0062	. 0068	55
		170	. 0074	. 0056	38
		325	. 1850	. 0694	19
			Total	. 0862	
	8 M	\# 10	-	-	-
		18	. 0003	-	-
		35	. 0016	. 0026	81
		60	. 0017	. 0020	59
		120	. 0044	. 0022	25
		170	. 0040	. 0024	30
		325	. 0164	. 0104	32
			Total	. 0197	

Table 4 : (continued)

Date	Station	Sieve Fraction	New Dry Weight Per Sample	Net Ash-free Dry Weight Per 1000 L	\% Organics
7/76	7 T	\# 10	. 0003	-	-
		18	. 0014	. 0012	64
		35	. 0018	. 0016	67
		60	. 0043	. 0031	53
		120	. 0076	. 0053	53
		170	. 0043	. 0029	51
		325	. 0498	. 0234	35
				Total 0.0375	
	78	\# 10	-	-	\cdots
		18	. 0021	-	-
		35	. 0018	. 0016	44
		60	. 0034	. 0030	44
		120	. 0147	. 0158	54
		170	. 0301	. 0256	43
		325	. 1312	. 0518	20
				Total $\overline{0978}$	
	8 M	\# 10	. 0007	-	-
		18	. 0024	. 0023	71
		35	. 0037	. 0036	73
		60	. 0101	. 0068	50
		120	. 0067	. 0032	36
		170	. 0061	. 0029	36
		325	. 0028	. 0088	29
				Total $\frac{.0276}{}$	
8/76	7 T	\# 10	. 0020	-	-
		18 35	. 0030	. 0018	60
		35	. 0030	. 0025	83
		60	. 0089	. 0033	37
		120	. 0121	. 0040	33
		170	. 0050	. 0018	36
		325	. 0555	. 0157	28
				Total .0297	
	7 B	\# 10	-	-	-
		18	. 0015	-	-
		35	. 0026	. 0020	58
		60	. 0050	. 0027	40
		120	. 0186	. 0158	64
		170	. 0333	. 0179	41
		325	. 1219	$\frac{.0330}{.0714}$	20
				Total $\frac{.0714}{.071}$	2
	8 M	\# 10	. 0010	. 0009	9 C
		- 18	. 0092	. 0050	54
		35	. 0052	. 0040	77
		60	. 0161	. 0054	34
		120	. 0095	. 0045	47
		170	. 0072	. 0028	39
		325	. 0308	. .0090	29
				Total $\overline{.0316}$	

Table \qquad 4 : (continued)

Date	Station	Sieve Fraction	New Dry Weight Per Sample		Net Ash-free Dry Weight Per 1000 L	$\%$ Organics
9/76	7 T	\# 70	. 0021		. 0021	76
		18	. 0065		. 0057	66
		35	. 0144		. 0072	38
		60	. 0057		. 0033	44
		120	. 0079		. 0017	16
		170	. 0074		. 0021	22
		325	. 1203		. 0352	22
				Total	$1 . .0573$	
	7 B	\# 10	-		-	-
		18	. 0041		. 0028	34
		35	. 0018		. 0018	50
		60	. 0052		. 0020	19
		120	. 0207		. 0042	10
		170	. 0280		. 0058	10
		325	. 3616		. 0986	14
				Total	1.1152	
	8 M	\# 100	. 0025		. 0020	60
			. 0041		. 0048	88
			. 0100		. 0105	79
			. 0063		. 0053	63
			. 0068		. 0032	35
			. 0051		. 0017	25
			. 0558		. 0250	34
				Total	$1 . .0525$	
10/76	7 T	\# 10	-		-	-
			. 0015		. 0012	60
			. 0035		. 0015	31
			. 0072		. 0015	15
			. 0039		. 0021	41
			. 0029		. 0017	45
			. 0317		. 0109	26
				Total	1.0189	
	7 B	\# 100	. 0005		-	
			. 0030		. 0029	73
			. 0022		. 0021	73
			. 0033		. 0013	30
			. 0087		. 0021	18
			. 0125		. 0043	26
			. 1609		. 0340	16
				Total	1.0467	
	8 M	\# 10	-		1 .	-
		18	. 0002		-	-
		35	. 0024		. 0021	67
		60	. 0022		. 0009	32
		120	. 0037		. 0015	30
		170	. 0031		. 0013	32
		325	. 0208		. 0077	28
				Tota 1	1.0135	

Table \qquad 4 : (continued)

Date	Station	Sieve Fraction	New Dry Height Per Sample	Net Ash-free Dry Weight Per 1000 L	\% Organics
11/76	7 T	\# 10	. 0014	. 0011	93
		18	. 0022	. 0021	73
		35	. 0034	. 0016	35
		60	. 0034	. 0012	26
		120	. 0025	. 0012	36
		170	. 0031	. 0075	35
		325	. 0033	. 0016	36
		\# 10		Total .0109	
	7 B		-	Total . 0	-
			. 0009	-	-
			. 0074	. 0005	29
			. 0018	. 0016	67
			. 0028	. 0013	36
			. 0076	. 0012	56
			. 0061	. 0019	23
				Total 00065	
	8 M	\# 10	-	-	-
			. 0012	. 0013	83
			. 0052	. 0037	54
			. 0043	. 0029	51
			. 0056	. 0021	29
			. 0030	. 0016	40
			. 0173	. 0069	30
				Total ${ }^{.0185}$	
12/76	7 T	\# 10	-	-	-
			. 0028	. 0032	57
			. 0024	. 0026	54
			. 0038	. 0040	53
			. 0080	. 0058	43
			. 0146	. 0084	29
			. 1640	. 0492	15
				Total $\frac{.0742}{.070}$	1
	7 B	\# 10	. 0025	. 0030	60
			. 0010	. 0012	60
			. 0029	. 0034	59
			. 0066	. 0086	65
			. 0292	. 0218	37
			. 0506	. 0178	18
			. 4363	. 1056	12
	8 M	\# 10		Total .1614	
			. 0034	. 0060	88
			. 0007	. 0008	57
			. 0028	. 0032	57
			. 0064	. 0090	70
			. 0196	. 0190	48
			. 0374	. 0232	31
			. 3592	. 1158	16
				Total $\frac{.1770}{}$	16

Table 4 : (continued)

Date	Station	Sieve Fraction	New Dry Weight Per Sample	Net Ash-free Ory Weight Per 1000 L	$\%$ Organics
1/77	7 T	\# 10	. 0009	. 0010	56
			. 0004	. 0006	75
			. 0043	. 0048	56
			. 0069	. 0084	61
			. 0439	. 0170	19
			. 1683	. 0220	07
			5115	. 0678	07
			Total	. 1276	
	7 B	\# 100	. 0057	. 0092	81
			. 0040	. 0066	83
			. 0116	. 0144	62
			. 0308	. 0300	49
			1777	. 0366	10
			3995	. 0300	04
			7367	. 0700	05
			Total	. 1968	
	8 M	$\begin{array}{rr}\# \quad 10 \\ & 18 \\ 30 \\ 60 \\ 120 \\ 170 \\ 325\end{array}$. 0007	. 0012	86
			. 0009	. 0014	78
			. 0031	. 0048	77
			. 0048	. 0058	60
			. 0663	. 0206	15
			. 1219	. 0202	08
			. 5987	. 0704	06
			Total	.1244	
2/77	7 T	\# 10	. 0010	. 0016	80
			. 0003	-	-
			. 0017	. 0016	47
			. 0026	. 0012	23
			. 0085	. 0050	29
			. 0198	. 0068	17
			. 2384	. 0466	10
			Total	. 0628	
	7 B	\# 10	. 0009	. 0010	56
			. 0007	. 0010	71
			. 0016	. 0020	63
			. 0049	. 0068	69
			. 0307	. 0198	32
			. 0754	. 0148	10
			. 6471 Total	. 0956	07
			Total	. 1410	
	8 M	\# 10	,	-	5
			. 0004	. 0006	75
			. 0011	. 0018	81
			. 0019	. 0026	68
			. 0068	. 0042	37
			. 0171	. 0058	17
			. 1996	. 0266	07
			Total	. 0476	

Table _ 4 : (continued)

Date	Station	Sieve Fraction	New Dry Weight Per Sample	Net Ash-free Dry Weight Per 1000 L	\% Organics
3/77	7 T	\# 10	. 0011	. 0012	45
		18	. 0035	. 0050	57
		35	. 0038	. 0067	71
		60	. 0099	. 0125	51
		120	. 1091	. 0247	09
		170	. 2563	. 0152	02
		325	. 4564	. 0842	07
			Total	. 1495	
	7 B	\# 10	. 0056	. 0130	93
		18	. 0073	. 0157	86
		35	. 0150	. 0260	69
		60	. 0304	. 0342	45
		120	. 4512	. 0567	05
		170	1.0553	. 0355	01
		325	. 9564	. 1345	06
	8 M		Total	. 3156	
		\# 10	. 0033	. 0075	91
		18	. 0017	. 0035	82
		35	. 0038	. 0070	74
		60	. 0120	. 0180	60
		120	. 0541	. 0397	29
		170	. 1593	. 0440	11
		325	. 9624	. 1755	07

Table 4: Detritus taken in the Apalachicola River in a series of sieves (\#10-436) on a monthly basis and expressed as organic matter (ash free dry weight) and total dry weight. Stations sampled included the main portion of the river (surface and bottom: 7T, 7B and a tributary to East Bay, Little St. Marks, mid-depth: 8) with figures adjusted for total flow per month using mean values at station 7 (7 m) . The organic detritus ratio reflects relative levels (ash free dry weight) at the two stations ($7 \mathrm{~m} / 8$) .

Date	Station	Detritus, Ash Free Dry Weight (g/l)	Total, Dry Weight (g/1)	Ratio of Organic detritus	$\begin{aligned} & \text { Dry } \\ & \text { A: } \\ & \text { B: } \end{aligned}$	$\begin{aligned} & (7 \mathrm{~m}) \\ & \text { (Kg/month) } \\ & \text { (tons/month) } \end{aligned}$
8/75	7 T	0.0000964	0.0727	1.57	A.	305,915
	7B	0.0001816	0.1707		B.	337
	7 M	0.0001392	0.1217			
	8	0.0000644	0.0446			
9/75	7 T	0.0000172	0.0075	2.07	A.	40,011
	7 B	0.0000440	0.0295		B.	45
	7M	0.0000306	0.0185			
	8	0.0000148	0.0112			
10/75	7 T	0.0001800	0.3201	2.20	A.	269,903297
	7B	0.0001816	0.7030		B.	
	7M	0.0001420	0.5115			
	8	0.0000644	0.1640			
11/75	7T	0.0001434	0.5874	3.43	B.	344, 379
	7 B	0.0002764	0.6955			
	7M	0.0002099	0.6414			
	8	0.0000612	0.1253			
12/75	7 T	0.0001038	1.2524	3.36	A.	269,496
	7B	0.0002142	1.7623		B.	
	7 M	0.0001590	1.5073			
	8	0.0000126	0.0252			
1/76	7 T	0.0001658	0.6927	3.02	A.	442,533
	7B	0.0002180	1.0600		B.	487
	7M	0.0001919	0.8763			
	8	0.0000636	0.1719			
2/76	7T	0.0001290	0. 3235	1.20	A.	377,030
	7B	0.0002096	0.6328		B.	37, 415
	7M	0.0001693	0.4781			
	8	0.0001406	0.4014			
3/76	7 T	0.0000230	0.0818	0.65	A.	138,420
	7 B	0.0000866	0.3037		B.	152
	7 M	0.0000551	0. 1927			
	8	0.0000853	0. 3569			
4/76	7 T	0.0000104	0.0380	0.41	A.	48,253
	7B	0.0000259	0.0420		B.	53
	7M	0.0000182	0.0400			
	8	0.0000449	0.1672			

Date	Station	Detritus, Ash Free Dry Weight (g/1)	Total, Dry Weight (g/1)	Ratio of Organic detritus	$\begin{aligned} & \text { Detr } \\ & \text { Dry } \\ & \text { A: } \\ & \text { B: } \end{aligned}$	itus, Ash Free Weight (7 m) total ($\mathrm{Kg} / \mathrm{month}$) total (tons/month)
5/76	7 T	0.0000948	0.2079	2.15	A.	$\begin{array}{r} 324,822 \\ 357 \end{array}$
	7B	0.0001638	0.3494			
	7M	0.0001293	0.2786			
	8	0.0000602	0.0601			
6/76	7 T	0.0000278	0.0615	2.91	A.	118,868
	7B	0.0000862	0.2028		B.	+131
	7M	0.0000570	0.1321			
	8	0.0000196	0.0284			
7/76	7 T	0.0000378	0.0695	2.09	A.	90,776
	7B	0.0000978	0.1833		B.	- 100
	7 M	0.0000577	0.1264			
	8	0.0000276	0.0525			
8/76	7 T	0.0000291	0.0895	1.59	A.	59,898
	7B	0.0000714	0.1829		B.	59,898
	7M	0.0000503	0.1362			
	8	0.0000316	0.0790			
9/76	7 T	0.0000573	0.1643	1.64	A.	
	7B	0.0001152	0.4214		B.	90,973100
	7M	0.0000863	0.2928			
	8	0.0000525	0.0906			
10/76	7 T	0.0000189	0.0507	2.42	\wedge.	37,155
	7B	0.0000467	0.1911		B.	-41
	7M	0.0000328	0.1371			
	8	0.0000135	0.0208			
11/76	7T	0.0000109	0.0193	0.47	A.	11,11212
	78	0.0000065	0.0146		B.	
	7M	0.0000087	0.0169			
	8	0.0000185	0.0366			
12/76	7 T	0.0000742	0.1956	0.67	A.	353,483
	$7 \mathrm{7B}$	0.0001614	0.5291		B.	-389
	7M	0.0001178	0.3623			
	8	0.0001770	0.4295			
1/77	7 T	0.0001216	0.7362	1.28	A.	467,504
	7 B	0.0001968	1.3660		B.	514
	7M	0.0001592	1.0511			
	8	0.0001244	0.7964			
2/77	7 T	0.0000628	0.2723	2.45	A.	166,158
	7B	0.0001410	0.7613		B.	166,158183
	7M	0.0001019	0.5168			
	8	0.0000416	0.2269			

Date	Station	Detritus, Ash Free Dry Weight (g/1)	Total Dry Weight ($\mathrm{g} / 1$)	Ratio of Organic detritus		ritus, Ash Free Weight (7 m) total ($\mathrm{Kg} / \mathrm{month}$) total (tons/month)
3/77	7 T	0.0001495	0.8401	1.42	A. B.	$\begin{aligned} & 814,794 \\ & 896 \end{aligned}$
	7B	0.0003156	2.5212			
	7M	0.0002326	1.6806			
	8	0.0002952	1.1966			

Fig. 2: Apalachicola River flow (monthly means and range in cubic feet per second), macrodetritus (wood debris, leaf debris, and benthic macrophytes in $\mathrm{mg} / \mathrm{m}^{2}$), and microdetritus at the mouth of the river (total, $\mathrm{Kg} /$ month; concentrations in mg / l) from December, 1974 through March, 1977.


```
+
```


microbiological studies

I. RATIONALE:

The vital role of macro- and microdetritus in a river-doninated estuary as shown in this study of the Apalachicola estuary, indicated that study of the primary detritus utilizers - the microflora - was essential. It is these microorganisms which have the enzymatic armentarium to mineralize refractory materials and form suffictent cell'mass to support a large proportion of the estuarine food web. At the inftiation of this study there was ifttle quantitative work done in assessing the composition or population dynamics of the estuarine detrital microflora. Clearly from studies of the water column in fresh and salt water, the sedfments and the soil, classical methods of isolation and plating on selective media are of little use in studies of a dynamic population (see the literature reviewed in publications 1-4), and so initial phases of this woik concentrated on the development or modification of existing methods with which to study the detrital microflora. These methods involve measures of microbial mass and activity. From studies of activity it has been possible to develop methods with which to study population dynamics and the impact of stresses on the microbial community.

II. METHODS:

A. Mass

1. Muramic acid. The murano peptide is a component uniquely found In all known bacteria and blue-green algal cell walls with the exception of the
mycoplasma or PPLO organisuns. The murano peptide polymer is the main supporting material of the microbial wall and gives the cell its characteristic shape. Chains of alternating residues of N-acetylglucosamine and N-acetyl muramic acid are covalently linked by amide bonds at the muramic acid by peptide bridges. This polymer apperently completely encloses the cell. Muramic acid (3-0-carboxy-ethy1-D-glucosamine) does not occur in other prokaryotic or eukaryotic cells. Of the 300 or so PPLO, mycoplasma or L-formsdescribed, many are intracellular parasites of plants and animals, although they may survive in high osnotic environments like sewage. They form a minute percentage of the bacterial mass In vertebrates. One thermoplasma has been isolated from a high temperature acidic coal mine gob pile. Others have recently been detected in the sea. No estimate of the number of PPLO organisms detected on estuarine detritus or marine environments has yet been made (5,6).

Batch cultures of organisms grown to the stationary phase concain organisns of all ages in a relatively poorly controlled environment when compared with organisms grown in a nutrient-limited chemostat (7). Studies of numerous species of bacteria have shown that the proportion of muramic acid in the cell wall and the ratio of muramic acid to glucosamine are essentially invariant (7-9), However, differences in the sensitivity to the wall of lytic enzyte lysozyme heat-killed Bacillus subtilis w-23 grown in chemostats with different limiting nutrients have been shown (10). On isolation of the walls after removal of the teichoic acids and analyses of the mucopeptide, the maximum variability in the ratios of glucosamine to muramic acid varied between 0.5 for sulfate-limited growth to 1.07 for NH_{3}-limited cells, possibly a variation by a factor of 2. No changes in muramic acid levels have been induced with other strains of bacillus subtilis, however (11). The direct analysis of labora-tory-grown batch cultures which showed an average of 3.44 ± 0.5 ($\overline{\mathrm{X}} \pm 0$) $\mu \mathrm{g} / \mathrm{mg} \mathrm{dry}$
weight for seven species of gran-negative bacteria and $9.6 \pm 1.9(\vec{X} \pm 0)$ for five species of gram-positive bacteria with the data expressed as $\mu \mathrm{g}$ muramic acid per mg dry welght (12). Spores from gram-positive bacilli averaged $38_{i} 8$ muramic acid/mg dry weight $\pm 6.2(\bar{X} \pm \sigma) \mu g / m g$ dry weight. The hydrolysates of these spores also contain the amino acid dipicolinic acid, an amino acid that has not yet been found in vegetative bacteria, other prokaryotes or eukaryotes (13 2. Our Methodology (see below) allows for the detection of this amino acid. As yet dipicolinic acid has been undetectable in estuarine samples. In addition the rates of incorporation and turnover (loss of ${ }^{14} \mathrm{C}$-labeled wall during incubation in the medium not containing radioactivity) have been shown to serve as indicators of bacterial growth. Our methodology has recently been reported in the literature (3).
2. Adenosine triphosphate (ATP). Adenosine triphosphate is the energy currency of the cell - the ultimate product of catabolism. Elegant studies by FolmHansen and Booth (14) and Holm-Hansen (15, 16) have estabinshed that for 30 species of unicellular algae, seven strains of marine bacteria grown in batch eultures, marine phytoplankton under conditions of nitrogen, phosphorus or silicon deficiency, algal cells exposed to alternating periods of light and dark, natural phytoplankton populations grown in nutrient-enriched media, as well as micro and macro-zooplankton from laboratory cultures or isolated from the water colum, the levels of extractible ATP correspond to 0.04% of the total particulate organic carbon. The total particulate organic carbon correlates directly with the dry welght of the cells. In these and many other experiments the microorganisms were concentrated on Millipore filters with 0.45 um pores. ATP is present in all living cells thus far examined. It rapidly hydrolyzes in dead material or cells deprived of metabolizable substrate (17). At least in the water column the ATP exists in reasomably uniform concentrations in all cells,
regardless of the environmental strains. Under specialized and stringent conditions we have been able to change the level of cellular ATP in the bacteria Haemophilus parainfluenzae and Staphylococcus aureus by a factor of two by manipulation of the state of the electron transport system (17).

The assay of ATP in the nanogram ranges typical of ecological studies requires the use of the luciferin-luciferase enzyme system from firefly tails. Methods for standardization of the enzyme have been well worked out (18).

Problems with detritus of sediments lie in the quantitative extractibility of the nucleotides. In our laboratory cultures, cellular reactions may be stopped and the nucleotides extracted with ice-cold 1.92 M perchioric acid. Neutralization with ice-cold KOH and precipitation of potassium perchlorate yields a solution that can be measured reproducibly by luciferin-luciferase phosphorescence at sufficient dilution of 1.0 nole $/ \mathrm{ml}$ so there is essentially no salt effect on the enzume. Envirommental samples are usually at concentrations where dilutions of the potassium perchlorate are insufficient to remove salt effects from the assay conditions. Extraction from filtered microorganisms by boiling in 0.02 M tris-hydroxyamino methane buffer, pH 7.75 , is quantitative. Karl and LaRock (19) have shown that boiling is not satisfactory for microorganisms in sediments, and they have developed a sulfuric acid-ethylenediamine tetraacetic acid extraction procedure that quantitatively extracts ATP from marine sediments yet does not interfere with the enzymes that are essential for the assay.

A liquid scintillation counter operating in the non-coincident mode is satisfactory for detection of the phosphorescence.

ATP then is a measure of microbiomass. The metabolic state of the cells may be better reflected in the somcalled energy charge of the total adenylate pool $(13,20)$. The value $\frac{A T P+0.5 A D P}{}$ is of primary importance in
regulation of glycolysis, and other vital metabolic processes. ADP can be quantitatively estimated after incubation with phosphoenolpyruvate and pyruvate kinase as the additional ATP generated. This value minus the ATP value equals the ADP level. AMP is determined by adding myokinase to a portion of the ADP reaction. The difference of this value, minus the ADP, minus the ATP level, represents the AMP level. These procedures have been utilized in our laboralory (17).
3. Dipicolonic acid. Dipicolinic acid (DPA) is an amino acid uniquely found in the spores of bacteria and some fungi, where the presence seems to be related to the resistance to heat and drying (21). A method has been developed involving the extraction of DPA from detritus or sediments, its purification chromatographically and its detection by the gas-liquid chromatography of its isopropyl ester. This can lead to studies of the environmental conditions stimulating or repressing sporulation.

B. Microblal activities.

1. Enzyme activities. Methodology that can be performed in the field in time periods short enough to obviate significant distortion by microbial growth after sampling involves a study of enzyme activities.

Ecological studies of specific enzyme activities usually deal with a single enzyme activity rather than considering a variety of enzyme activities simultaneously, However a battery of enzyme indicators encompassing several classes of compounds can be used to define and assess the activity of functional groups within the microbial commity. The distribution and role of some specific enzymatic acitvities of fungi, yeast, and bacteria in the marine environment are already well-documented indicating various relationships between environmental substrate and/or breakdown products availability and specific enzyme activity. Such enzyme studies have been published from this laboratory (2, 3, 22, 23).
2. Sulfate reduction. Sulfate reduction is only known to proceed by anaerobic microbial activities of the Desulfovibrio-1ike organisms. We have developed an assay using the recovery of $\mathrm{H}_{2}{ }^{35}$, generated by reduction of ${ }^{35} \mathrm{SO}_{4}=$, from sediments or water (after acid treatment) or from the air above a sample to measure rates of reduction; hence we are able to estimate anaerobic activity. Sulfate reduction rates in bottom muds have been shown to be related exponentially to sulfate concentrations between 40 and 200 ppm sulfate.
3. Heterotrophic potential. Heterotrophic activity, assayed by the collection and measurement of ${ }^{14} \mathrm{CO}_{2}$ released by microbial utilization of various ${ }^{14} \mathrm{C}$-labeled substrates has been measured. The correlation between heterotrophic activity in Apalachicola Bay microfloral detrital activity and other measures of activity have been reported (22).
4. Rate of lipid synthesis. Our studies have shown (24) that the rates of phospholipid synthesis and synthesis of total lipids measured as incorporation of ${ }^{14} \mathrm{C}$ and ${ }^{32} \mathrm{P}$ into lipids parallel the adenosine triphosphate levels, alkaline phosphatase, α - D-mannosidase, or rate of oxygen utilization. Methods can be applied to estuarine sediments or detritivore communities. The parameters necessary to control quadrat size, sample variance and assay reproducibility have been determined.
5. Non-invasive semi-continuous monitoring of microbial activity. The detrital microflora on oak leaves incubated in Apalachicola Bay for 4 - 6 weeks is a diverse and active collection of organisms (2). The leaves lose only about 20% of their dry weight in 16 weeks, so remain fairly stable. If cut into discs 6.5 mm in diameter and loosely packed in glass columns and estuarine water is pumped through the colums, various activity measures can be monitored. Differences in oxygen concentration, sulfide concentration and $p H$ have been monitored in the influent and effluent stream pumped through a column loosely
filled with detritus. The oxygen concentration of the influent and effluent streams may then be monitored to assess short-term respiratory response as a fumction of the experimental variables in order to determine a dose response relationship. The advantage of this method lies in the ability to do repeated, experiments with a nearly constant undisturbed microbial population. The methodology has been well worked out in our laboratory, and preliminary data are very encouraging (Table I).

Exploitation of information contained by other chemical parameters of the flow stream will be attempted. The thick epibiotic matrix commonly found associated with detritus suggests the possibility than significant amounts of anaerobic activity may exist, in spite of the high oxygen levels present. With this in mind, sulfate-reducing ability of the system could be determined by following the sulfide concentrations in the flow streams. A preliminary experiment, adapting a spectrophotometric sulfide assay (25) for continuous monitoring via an Autoanalyzer type reaction system, showed promise. The sulfide concentration appeared to fluctuate in a non-random manner: Fourier analysis of the data indicated a 90 -hour cycling time of the sulfide levels. Unfortunately stability of the analytical instrumentation is presently inadequate to unequivocably confirm the data. Another possibility of measuring sulfide lies in the use of a specific ion electrode. Again, the problem of detector stability needs to be solved.

Another parameter to be measured is pH , since a number of microbial processes create changes in hydrogen ion concentration. In a sample experiment, a detrital colum equipped with a pH electrode showed small changes in response which, when analyzed by Fourler transformation, indicated a cycle time of greater than 70 hours. Again the drift of the electrode introduces a large measure of uncertainty to the results.

Perhaps the most general indicator of activity is enthalpy. To measure enthalpy we propose to build a chamber containing column in a water bath/air bath container whose temperature is regulated to $10^{-4} \mathrm{C}$. The temperature of the flow stream will be monitored to measure the activity of the population. Possible temperature sensors include comercial thermopiles, custom-built dielectric constant devices, or thermistors. An elementary thermistor device was constructed to determine the feasibility of the measurements. The addition of $10^{-4} \mathrm{M}$ glucose resulted in about a $25 \mu \mathrm{~W} / \mathrm{gram}$ of detritus increase in heat production. The apparatus was only suitable for short-term measurement (<1 hour) because of external thermal inputs. A commercially available temperature regulator (Tronac) is expected to remedy these probiems:
C. Population dynamics.

1. Lipid classes and lipid metabolism. Methods to reproducibly fractionate the lipids derived from the detrital microfloral assembly have been developed and used to study the metabolism of this communty (4). Lipid composition was first used with taxonomic classification of microorganisms by Abel et al (26), using qualitative fatty acid analysis. These workers showed it was possible to differentiate between different groups of bacteria by their fatty acid composition. An elegant compilation of the qualitative lipid composition of various genera and species of bacteria has been prepared by Norman Shaw (27), who points out that the lipids are universally present in bacteria, they are easily and specifically extracted, and can be readily identified. There are a great variety of complex lipids, some of which are unique to prokaryotes and they average about $3-5 \%$ of the cellular dry weight. There are four major types of lipids in bacteria, the apolar lipids, neutral lipids, phospholipids and glycolipids. Each class contains distinctive features which form useful measures of microbial diversity and thus can be used to measure microbial succession.

Methods currently in use in our laboratory include:
a. Microbial prokaryote/eukaryote ratios. Preliminary experiments have shown that the detrital microflora synthesizes about 20% of its total fatty acids as C18-, C2O-, C22-, and C24-polyenoic fatty acids. These are clearly formed by eukaryotic organisms (28). We will contrast the proportion of polyenoic fatty acids with a characteristic prokaryotic fatty acid such as C-15 isobranched to develop prokaryotic-eukaryotic ratio and contrast the ratio to that between the triglyceride, steroid, glycerosphingolipid (eukaryotic lipids) versus a typical bacterial lipid such as phosphatidyl glycerol in test systems where we know we would stimulate fungal or algal growth. The proportion of major classes of lipids was a function of the time of incubation with sodium acetate- $1-{ }^{14} \mathrm{C}$. The length of the incubation with ${ }^{14} \mathrm{C}$ shows good correlation with what we expect for the growth rates of different components of the detrital microflora. Slower growing organisms contain more glycolipid and neutral lipid than phospholipid, which is what would be expected for fungi versus bacteria, for example (4). Consequently a study of the proportion of key lipids versus time of incubation with ${ }^{14} \mathrm{C}$ could give correlations to the relative impacts ${ }^{\circ}$ of toxicants on prokaryotes and eukaryotes.
b. Gram-positive to gram-negative ratio. Preliminary evidence indicates the usefulness of the ratio of phosphatidyl glycerol aminoacyl derivatives, or glycosyl diglyceride to a universal microbial lipid like phosphatidyl ethanolamine to determine a gram-negative to gram-positive ratio among the bacteria. Phosphatidyl glycerol aminoacyl derivatives or glycosyl diglycerides are typical components of gram-positive microbes and are not found in classical gram-negative beterotrophs.
c. Discinctive prokaryote-phospholipid markers. The composition of the non-diacyl phospholipids can be used to follow the relative activities of
the Clostridia (plasmalogens), the Bacteroides (sphingophospholipids) or halophilic-thermophilic bacteria (ethers). Our preliminary data indicates 50% of the lipid phosphate was in lipids not made water-soluble by mild alkaline methanolysis (4). Thus these three lipid classes could possibly suggest significant details about the microfloral population.

For each component we assay, we can also measure its synthesis and turnover rates to get an idea of its metabolism. Our preliminary studies on gross separations show a surprising uniformity of turnover times for a large proportion of the community (Table II) and these methods show good (for envirommental studies at least) agreement for varfous estimates of the microbial mass (Table III).
2. Endogenous storage materials. Work as yet unpublished has yielded methods of measuring the rates of synthesis and utilization of the bacterial endogenous storage polymer poly β-hydroxy butyrate (PBHB). PBHB is formed when bacteria are deprived of a growth-limiting substrate in the presence of both energy sources and carbon. Limitations of sulfate, nitrogen, phosphate, pH , trace metals or oxygen lead to its synthesis (29, 30).

We have developed an assay for the quantitative extraction, purification and assay of PBHB from environmental samples, and shown that fmpacts which affect other activity parameters also affect the metabolism of their endogenous storage products.
3. Scanning electron microscopy. The progressive colonization of the degrading plant litter in East Bay was followed by scanning electron microscopy (SEM). This procedure enables one to determine the extent of colonization of the plant litter surface as well as the classes and relative density of various microbial forms present.

Samples were prepared by a fixation procedure utilizing glutaraldehyde, osmitur tetroxide in s-collidine buffer, and ethanol as the dehydrating agent.

Samples were critical point dried in a custom-made critical point dryer utilizing liquid CO_{2}, mounted on pedestals, and then coated with gold-palladium (60:40:W/W). Samples were examined using a Cambridge Stereoscan $54-10$ microscope.
D. Behavior and trophic efficiencies of primary eukaryotic detritivares.

We have chosen as a primary detritivore to study Gammaridean amphipods. Gut analysis amongst the dominant fish in the estuary (31) showed Gamaridean amphipods in 18 of 247 (7\%) of Anchoa mitchilli; 31 of 81 (38\%) of Leiostomus xanthurus; and 96 of 165 (58\%) of Micropogon undulatus. Most of the amphipods found in the fish stomachs were between 30 to 50 mm in Iength (P. F. Sheridan, unpublished data). Amphipods have been reported in fish stomachs from California (32), Louisiana (33), Mississippi (34), South Florida (35) and Washington (36). Stickney and Shumway (37) in their review of the food habits of fish, show amphipods as a prominent component in the gut of numerous fish.

We find Gammaridean amphipods as the predominant invertebrates in leaf baskets we place in Apalachicola Bay. These amphipods are excellent indicators of the "quality" of the detrital microflora as they have short, relatively simple, digestive tubes where the complication of endosymbiotic microorganisms is minimal (38-40). They gurvive well in the laboratory, have a relatively simple life cycle (41, 42) and show rapid responses to the environment (43-45).

Preliminary experiments indicate that Gammaridean amphipods can determine if the effects of impacts on the detrital microflora are readily transferred through the food web. Experimental detritus samples will be offered to amphipods In an apparatus consisting of 8 identical small chambers arranged radially around a Iarger chamber. Since amphipods are photophobic, infrared sensors in the connecting passageways will be used to detect the amphipod flux in the apparatus.

Electronic counters will accumulate the data. Water may be pumped into each radial chamber and drained through an outlet in the central chamber. By varying the composition of the water or food source, food preferences and water avoidance behaviors may be distinguished. The chamber is also suitable for the study of small shritap and crabs. Presently the chamber has been constructed and the electronic monitoring system has been designed and partially constructed. Preliminary experiments show that use of 200 or more amphipods with the same bait samples in the radial chambers results in a random distribution.

We propose to try to detect the effects of changes in detrital microflora on the amphipods by showing differences in the protein to neutral lipid ratios In the amphipods (preliminary studies show that starving amphipods for 24 hours decreases the lipids selectively),
III. RESULTS:
A. Effects of natural substrates on the activity and succession of the detrital microflora.

Rates of ${ }^{14} \mathrm{CO}_{2}$ formation from ${ }^{14} \mathrm{C}$-glucose and ${ }^{14} \mathrm{C}$-glutamate from oak leaves and pine needles incubated in Apalachicola Bay showed an initial colonization period in which there was a rapid increase in activity with the pine needles showing a higher activity than oak leaves ($\mathrm{V}_{\text {max }} 165$ and 110 ng substrate/ 1 hour gram litter) which paralleled the ATP content. The muramic acid levels paralleled the turnover time (the time necessary for the removal of the substrate from the environment). The turnover time was highest initially, reflecting the higher activity of the initial colonizers of the detrital surface which was largely bacterial. Initial turnover times were 41 hrs for pine and 102 hr for oak with glucose and 31 hr for pine and 36 hr for oak with glutamate as substrates (22).

Analysis of esterase activities, oxygen utilization and ATP levels showed seasonal differences between oak and pine litter. Rates of oxygen utilization and B-D-galactosidase activity were higher on oak litter. The alkaline phosphatase activity and phosphodiesterase activities were related to the amblent temperature around $21^{\circ} \mathrm{C}$. Alkaline phosphatase activity on the pine always efther equalled or exceeded that found on oak, whereas at temperatures below $21^{\circ} \mathrm{C}$ the activity on the oak always exceeded the plne. Esterase activities and respiration changed with time of exposure in the bay, suggesting a functional succession of the litter-associated microbial commaties. B-Dglucosidase, β-D-galactosidase on both oak and pine litter rose rapidly initially, but then showed progressively decreasing increments with longer incubation which correlated inversely with the weight loss. Overall esterase activities correlated well with weight loss. Alkaline phosphatase in phosphate-limited situations of ambient concentrations less than $10^{-6} \mathrm{M}$ showed good correlation with the ATP levels.

The implication that there was a difference in microbial populations between pine needles and oak leaves is borne out by differences in the rates of syntheais of phospholipids and total lipids (I). The relative rates of lipid synthesis paralleled the ATP and muramic acid levels (1, 4) and in the ratios of neutral lipids, phospholipids and glycolipids in the population (4). Sweet gum leaves (which disintegrated most rapidly of those tested), when incubated in the bay showed a significantly more rapid rate of lipid synthesis, a different lipid composition and a higher level of ATP than pine or oak leaves.

The relative rates of colonization differed between plant litter type and the surface observed by scanning electron microscopy. The needle structures of the alash pine needle were clearly visible, and there was inttle colonization at week zero, prior to placement of the litter in the estuary, but by the first week
colonization was well in progrese and continued to increase in time. In the case of the live oak leaves, the stellate hair-covered ventral surface was rapidly covered by microorganisms and accumulated debris, while the relatively smooth dorsal surface was patchily colonized in the early periods with a complete microbial distribution on the surface not observed until weeks 4 and 5 .

A variety of microorganisms were observed at different times on both pine needles and oak leaves. Bacteria were commonly observed on most samples; the majority of organisms were cocci, either smooth or rough-surfaced, though bacilli were occasionally observed. The organisms were often seen in colonies, were observed during various stages of divisions, and were frequently attached to the plant litter surface by mucoid-type attachments or mesh-like networks. A variety of diatoms were attached to the plant litter of both types, and while they were present in the early stages, their abundance increased noticeably in the latter stages. The presence of fungi was confirmed by the observation of conidia on week 4 pine needles. Filamentous forms were most extensive during weeks 4, 5 and 6. Other organisms observed suggested the presence of occasional blue-green algae and other algae. The sequence is illustrated in Figures 1 and 2.
B. Comparison between natural degradable substrate, pine needles, and non-degradable surface.

Pine needles and extruded polyvinyl chloride needles from an artificial Christmas tree were analyzed for a 14 weekly period of incubation in Apalachicola Bay. Respiration (rate of oxygen utilization), alkaline phosphatase and phosphodiesterase activities, the rate of incorporation of 140 -acetate into the lipids and the ATP level were 2 to 5 fold higher on the natural surface compared to the plastic. The difference in the microfloral composition was reflected in at least a three order of magnitude difference between the activities of $\alpha-D-m a n n o s i d a s e, \beta-D-g a l a c t o s i d a s e$ and $\beta-D-g l u c o s i d a s e$ on the pine needles compared to the plastic needles. The lipid composition also showed significant
differences on the artificial plastic needle microflora. The artificial pine needle microflora formed lipids containing 20% higher glycolipid ratios than the flora on the pine needles. Scanning electron microscopy showed a sparser population on the artificial surface of organisms with distinctly different shapes.

Thege microbial data correlate with the recovery of animals from the baskets. There significantly less detritivores and their predators associated with the artificial needles than with the natural substrate.
C. Evidence for succession on the detrital leaf surface.

Scaning electron microscopy, the ATP to muramic acid ratio, the initially high turnover numbers for the heterotrophic potential, the lipid composition of the growing microbial community with a high phospholipid proportion, all support an initial bacterial colonization. There is a more rapid increase in muramic actd in both pine and oak leaves than in the ATP level, suggesting the bacteria (containing muramic acid) colonize the surface more rapidly than do the nonmuramic acid-containing eukaryotes (containing ATP but no muramic acid) (2). This has been confirmed by the scanning electron microscope.

D. Rate of crowth.

Estimates of the growth rate using several parameters show that the growth of the detrital mictoflora is slow, even in this rich estuary (Table II). Use of a pulse of sodium acetate-1-I4C followed by growth in non-radioactive medium has allowed study of the population dynamics of the detrital bacterial population. The bacterial (muramic acid-containing) component has been shown to contain a small communty of rapidly growing heterotrophs ($\mathrm{T} 1 / 2=3.2 \mathrm{hr}$) while the bulk of the population has a relatively slower average growth rate ($\mathrm{T} 1 / 2=72 \mathrm{hr}$). Using the same pulse chase technfque, the bacterial lipids lost ${ }^{14} \mathrm{C}$ most rapidly
from the glycolipids with a $T 1 / 2$ equal to that of the slow component of the muratic acid (72 hr) . Neutral lipids and phospholipids were slower. Examination of the phospholipids after deacylation and separation of the slycerol esters showed a phospholipid pattern typical of gram-negative bacteria, although 0.58\% of the ${ }^{14} \mathrm{C}$ was found in phospholipids not deacylated under mild alkaline conditions, suggesting a complex assortment of microbes. The metabolism of the glycerol phosphate esters shows most rapid turnover of giycerol phosphoryl glycerol (derived from phosphatidyl glycerol) typical of bacteria and a lag in the saturation of the precursor pool of cardiolipin, again typical of bacterial metabollsm (4).

The activity of the bacterial component of the detrital microflora measured by the various techniques used in our laboratory is summarized in Table I. These give estimates of $100-1000 \mathrm{hr}$ for average doubling times of the bulk of the bacterial microflora. The organisms divide slowly as is typical of soil (46-48) or lacustrine muds ($10-280 \mathrm{hr}$) (49). Even in the relatively rich and warm vertebrate gastrointestinal system doubling rates of 0.5 to 1.4 divisions per day were measured (50) or 1.72 doublings per day in the bovine rumen (51). It is well known that slow-growing microorganisms are remarkably subject to stress (52).

Estimates of the microbial mass (Table III) findicate it represents about 1% of the dry weight of the litter.

The sediment taken from the bay shows about a tenth the activity and muramic acid content of the detrital particles (3).

E. Analysis of impacts.

- Preliminary investigations show changes in elasticity, inertia and resillency of the detrital microfiora as water with various pollutional insults is pumped through the glass tubes loosely filled with detritus. Changes in
respiratory activity are illustrated in Table I. Adding glucose or aged tanninrich water increases immediate activity (elasticity) with little long-term effect (inertia) or effect on the recovery (resiliency). Increase of salinity decreases activity again without effect on inertia or resiliency Antibiotic treatment however affects all three parameters. Similar changes in activity can be shown in the ATP to ADP ratio and the amount and synthesis of the microbial endogenous storage material poly-b-hydroxy butyric acid by decreasing the pH and by increasing the salinity.

F. Studies on the amphipod behavior and feeding efficiency.

Preliminary studies show that Gammaridean amphipods have a remarkable ability to select leaves with a high microbial population. They prefer the more heavily colonized ventral surface of the oak leaves to the plain dorsal surface. They trim the stellate hairs of the leaves but do not consume intact leaves. When hungry amphipods have been in contact with the detritus, the acanning electron microscopy looks like a lawn mower has run over the surface. This has been confirmed by showing a 10 -fold higher incorporation of ${ }^{14} \mathrm{C}$ in the amphipods allowed to graze on the leaves than in those exposed to water in contact with the labeled detrital microbial population (Table IV). Scanning electron microscopy of the amphipod fecal pellets shows the same catholic collection of microbial forms as found on the leaf surface, suggesting they "skim" a proportion of the flora. Comparison with different detrital microfloral populations should help to understand nutritional characteristics of these most inportant primary detritivores.

TABLE I

Estimates of the Estuarine Detrital Bacterial Growth Rates

Method

1. Incorporation of ${ }^{32} P$ into phospholipid into biomass (assume 50 umoles lipid per g dry wt)
a. 0.22% of biomass in 2 hrs (muramic actd)
b. 0.1% of biomass in 2 hrs (ATP)

Biomass determined by total muramic acid (a) or extractible ATP (b)
2. Muramic acid turnover $T 1 / 2=72 \mathrm{hrs}$
3. Glycolipid turnover $T 1 / 2=78 \mathrm{hrs}$
4. Saturation of cardiolipin precursors

T 1/2 GPG Lag in CL Doubling time
Monoculture $\quad 47 \mathrm{~min} \quad 40 \mathrm{~min}$
Detritus 110 hrs $\quad 70$ hrs

Estimates of the Detrital Microfloral Biomass

Method

* of dry wt litter

1. Muramic acid$2-17 \%$
(assume 4-10 mg/g dry wt)
2. Extractible ATP
$0.2-0.8 \%$
(assume $1 \mathrm{mg} / \mathrm{g}$ dry wt)
3. Oxygen uptake $1.4-2.2 \%$
(assume $\mathrm{Q}_{\mathrm{O}_{2}}=100 \mu \mathrm{~h} / \mathrm{h} / \mathrm{g}$ dry wt)
4. Phospholipid recovered $2-4 \%$
(assume 50 moles lipid/g dry wt)
5. Glycolipid0.3%
(assume $2.6 \mu \mathrm{~g}$ glycosyl diglyceride/g dry wt)
(gram + organisms)

TABLE IV

Distribution of Microbial ${ }^{14} \mathrm{C}$ on Dak Leaf Detritus After Feeding by Garmarus Amphipods.

Oak leaf discs 6.5 m diameter were incubated in Apalachicola Bay for 4 weeks, recovered and then incubated in the presence of sodium acetate-1- ${ }^{14} \mathrm{C}$ for 24 hours at $25^{\circ} \mathrm{C}$ allowing for the incorporation of approximately 10,000 cpm ${ }^{14} \mathrm{C} /$ disc. Thorough washing of the discs removes the acetate. Using 80 Gammarus amphipods recovered from the Bay and starved (rarnoved from detritus) for 24 hours, half were exposed to leaves containing ${ }^{14} \mathrm{C}$ Iabel. In another the amphipods were prevented from contacting the leaves by a nylon mesh.

Proportion of the ${ }^{14} \mathrm{C}$ recovered
A $^{\mathrm{B}}$
Open discs

Water ${ }^{c}$ 72\% 55.5\%
Disc ${ }^{\text {d }}$
17 42
$\begin{array}{lll}\text { Total Gamarus } \\ \\ & 0.14 & 0.29\end{array}$
Fecal pellets ${ }^{f}$
0.3
0.05

Purge waterg
8
2
${ }^{a}$ Column A. Discs on which the amphipods could feed directly (Fed)
${ }^{\text {b }}$ Column B. Discs enclosed in nylon mesh (Excluded)
c The water in which the experiment took place
d Dises after 24 hours of feeding
e Total Ganmarus
f Fecal pellets of Gamarus (after 24 hours feeding on labeled detritus).
g Water in which amphipods are purged for 24 hours after removal from labeled detritus.

Figure 1. Scanning electron micrographs of the colonization of Quercus virginfana leaves during incubation for various lengths of time in estuarine water.
(A) Dorsal surface, Week $0,230 \mathrm{X}, 10 \mathrm{Kv}$
(B) Dorsal surface, Week 2, 200x, 30Kv
(C) Dorsal surface, Week 4, 140X, 5Ky
(D) Dorsal surface, Week 6, 210X, 10 Kv
(E) Ventral Surface, Week $0,210 \mathrm{X}, 10 \mathrm{Kv}$
(F) Ventral surface, Week 1, 160X, 30Kv
(G) Ventral surface, Week 5, 230X, 10Kv
(H) Ventral surface, Week 6, 290X, 10Kv

Figure 2. Scanning electron micrographs. Organisms observed on surface of Quercus virginiana leaves colonized in estuarine water.
(A) Dorsal surface, Week 1, 5530x, 30Kv
(B) Dorsal surface, Week 1, 2600x, 30Kv
(C) Dorsal surface, Week 2, 5320X, 30Ky
(D) Dorsal surface, Week 3, 8420X, 30 Kv
(E) Ventral surface, Week 5, 5400x, 10Kv
(F) Ventral surface, Week $1,6090 \mathrm{X}, 30 \mathrm{Kv}$
(G) Ventral surface, Week 3, 1690X, 30Kv
(H) Ventral surface, Week 4, 1440X, 5Kv

Figure 1.

Figure 2.
IV. LITERATURE CITED:

1. White, D. C., R. J. Bobbie, S. J. Morrison, D. K. Oosterhof, C. W. Taylor and D. A. Meeter. 1977. Determination of microbial activity of estuarine detritus by relative rates of lipid biosynthesis. Limnol. Oceanogr. (in
press).
2. Morrison, S. J., J. D. King, R. J. Bobbie, R. E. Bechtold and D. C. White. 1977. Evidence for microfloral succession on allochthonous plant litter in Apalachicola Bay, Florida, USA. Marine Biol. (in press).
3. King, J. De, and D. C. White. 1977. Muramic acid as a measure of microbial biomass in estuarine and marine samples. App1. Environ. Microbiol. 33: (April).
4. King, J. D., D. C. White and C. W. Taylor. 1977. Use of lipid composition and metabolism to examine structure and activity of estuarine detrital microflora. App1. Environ. Microbiol. 33: (May).
5. Razin, S. 1970. Physiology of mycoplasmas. Adv. Microbial Physiol. 10: 2-80.
6. Smith, P. F. 1964. Comparative physiology of the pleuropneumonia-like and L-type organisms. Bact. Rev. 28: 97-125.
7. Reaveley, D. A., and R. D. Burge. 1972. Walls and membranes in bacteria. Adv. Microbial Physiol. 7: 2-84.
8. Rogers, H. J., and H. R. Perkins. 1968. Cell Walls and Membranes. E and F. N. Spon Limited, London.
9. Salton, M. R. J. 1960. Surface layers of the bacterial cell. In: The Bacteria, Vol. I: Structure, I. C. Gunsalus and R. Y. Stanier (eds), Academic Press, New York, pp. 97-114.
10. Ellwood, D. C., and D. W. Tempest. 1972. Effects of environment on bacterial wall content and composition. Adv. Microbial Physiol. 7: 83-117.
11. Young, F. E. 1965. Variation in the chemical composition of the walls of Bacillus subtilis during growth in different media. Nature 207: 104-105.
12. Millar, W. N., and L. E. Casida, Jr. 1970. Evidence for muramic acid in the soil. Canad. J. Microbiol. 18: 299-304.
13. Chapman, A. G., T. Fall and D. E. Atkinson. 1971. Adenylate energy charge in Escherichia coli during growth and starvation. J. Bacteriol. 108: 1072-1086.
14. Holm-Hansen, 0., and C. R. Booth. 1966. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limno1. Oceanogr. 11: 510-519.
15. Holm-Hansen, 0. 1973. Determination of total microbial biomass by measurement of adenosine triphosphate. In: Estuarine Microbial Ecology, L. H. Stevenson and R. R. Colwell (eds.), Univ. South Carolina Press, Columbia, pp. 73-88.
16. Holm-Hansen, 0. 1973. The use of ATP determinations in ecological studies. Bull. Ecol. Res. Comm. (Stockholil) 17: 215-222.
17. Goldenbaum, P. E., P. D. Keyser and D. C. White. 1975. Role of vitamin K_{2} in the organization and function of Staphylococcus aureus membranes. J. Bacteriol. 121: 442-449.
18. Knowles, C. J., and L. Smith. 1970. Measurements of ATP levels of intact Azotobacter vinelandii under different growth conditions. Biochim. Biophys. Acta 197: 252-160.
19. Karl, D. M., and P. A. LaRock. 1975. Adenosine triphosphate measurements in soil and marine sediments. J. Fish. Res. Bd. Canada 32: 599-607.
20. Atkinson, D. E. 1968. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7: 4030-4034.
21. Murrell, W. G. 1969. Chemical composition of spores and spore structures. In: The Bacterial Spore, G. W. Gould and A. Hurst (eds), Academic Press, New York, pp. 215-273.
22. Bechtold, R. E. 1976. A kinetic analysis of leaf litter-associated microbial activity In Apalachicola Bay. Master's Thesis, Florida State University.
23. Bobbie, R. J. 1976. Esterase activities and oxygen uptake of the endogenous microflora associated with three types of litter in a North Florida estuary. Master's Thesis, Florida State University.
24. Lillich, T. T., and D. C. White. 1971. Phospholipid metabolism in the absence of net phospholipid synthesis in a glycerol requiring mutant of Bacillus subtilis. J. Bacteriol. 107: 790-797.
25. Parsons, J. R., and J. D. H. Strickland. 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep Sea Res. 8: 211-222.
26. Abel, K., H. de Schmertzing and J. I. Peterson. 1963. Classification of microorganisms by analysis of chemical composition. I. Feasibility of utilizing gas chromatography. J. Bacterio1. 85: 1037-1044.
27. Shaw, N. 1974. Lipid composition as a guide to the classification of bacteria. Adv. Appl. Microbio1. 17: 63-108.
28. Kates, M. 1964. Bacterial lipids. In: Advances in Lipid Research, Vol. 2, R. Paoletti and D. Kritchevsky (eds), Academic Press, New York, pp. 17-90.
29. Dawes, E. A., and P. J. Senior. 1973. The role and regulation of energy reserve polymers in microorganisms. Adv. Microbial Physiol. 10: 135-266.
30. Dawes, E. A. 1976. Endogenous metabolism and the survival of starved prokaryotes. Symp. Soc. Gen. Microbiol. 29: 19-54.
31. Livingston, R. J., G. J. Kobylinski, F. G. Lewis III and P. F. Sheridan. 1976. Long-term fluctuations of epibenthic fish and invertebrate populations in Apalachicola Bay, Florida. Fishery Bull. 74: 311-321.
32. Hobson, E. S., and J. R. Chess. 1976. Trophic interactions among fishes and zooplankters near shore at Santa Catalina Island, California. Fishery Bull. 74: 567-598.
33. Thomas, J. D. 1976. A survey of Gammarid amphipods of the Barataria Bay, Louisiana region. Contrib. Mar. Sci. 20: 87-100.
34. Farreli, D. H. 1970. Ecology and seasonal abundance of 1ittoral amphipods from Mississippi. M. S. Thesis, Mississippi State University, State College, Miss
35. Odum, W. E. 1970. Pathways of energy flow in a South Florida estuary. Ph.D. dissertation, University of Miami, Coral Gables.
36. Levings, C. D. 1973. Intertidal benthos of the Squamish estuary. Fish. Res. Bd. Canada ms. rep. 1218: 60 p.
37. Stickney, R. R., and S. E. Shumway. 1974. Occurrence of cellulase activity in the stomachs of fish. J. Fish. Biol. 6: 779-790.
38. Schmitz, E. 1969. Visceral anatomy of Gamarus lacustris. Amer. Mdland Natur. 78: 1-54.
39. Martin, A. L. 1964. The alimentary canal of Marinogammarus obtusatus. Proc. Zool. Soc. London 143: 525-544.
40. Martin, A. L. 1966. Feeding and digestion of the intertidal Gammarids, Marinoganmarus obtusatus and M. pirloti. J. Zool. London 148: 515-525.
41. Martin, A. L. 1965. The histochemistry of the molting cycle in Gamarus pulex. J. Zool. London 147: 185-200.
42. Kaestner, A. 1970. Order Amphipoda. In: Invertebrate Zoology, Vol. III, pp. 470-502. Interscience Publishers, New York.
43. Kinne, 0. 1961. Growth, moulting frequency, heart heat, number of eggs and incubation time in Gammarus zaddachi exposed to different environment. Crustaceana 2: 26-36.
44. Sutcliffe, D. 1966. Sodium regulation in the fresh-water amphipod, Gammarus pulex. J. Exp. Biol. 46: 499-518.
45. Werntz, H. D. 1963. Osmotic regulation in marine and frest water Gammarids Biol. Bull. 124: 225-239.
46. Siala, A., and T. R. G. Gray. 1974. Growth of Bacillus subtilis and spore germination in soil observed by a fluorescent-antibody technique. J. Gen. Microbiol. 81: 191-198.
47. Gray, T. R. G., R. Hissett and T. Duxbury. 1974. Bacterial populations of litter and soil in a deciduous woodland. II. Numbers, biomass and growth rates. Revue d'ecologie et de biologie du sol. 11: 15-26.
48. Gray, T. R. G. 1976. Survival of vegetative microbes in soil. Syme. Soc. Gen.
Microbiol. 26: 327-364.
49. Gambaryan, M. E. 1966. Method of determining the generation time of microorganisms in benthic sediments. Microbiology 34: 939-943.
50. Gibbons, R. J., and B, Kapsimalis. 1967. Estimates of the overall rate oi growth of the intestinal microflora of hamsters, guinea pigs, and mice. J. Bacteriol.
93 , $510-512$.
51. E1-Shazly, K., and R. E. Hungate. 1965. Fermentation capacity as a measure of net growth of rumen microorganisms. Applied Microbiol. 13: 62-69.
52. Postgate, J. R. 1973. The viability of very slow-growing populations: a nodel for the natural eco-system. Bull. Ecol. Res. Conm. (Stockholm) 17: 287-292.

Litter-Associated Organisms

Introduction

For the past 3 years, studies have been carried out concerning organisms associated with allochthonous forms of detritus in the Apalachicola Estuary. This litter fauna is composed primarily of isopods, amphipods, and decapods. Such organisms appear to utilize detritus as substrate for shelter and/or food. Various studies have indicated that these species often depend on the microbial components of detritus for food (Adams and Angelovic, 1970; Fenche1, 1970; Kaushir and Hynes, 1971; Odum and Heald, 1972). However, the actual details of the trophodynamic relationships of detritus-based systems are little known. The leaf litter associations are composed of omnivores and detritovores which ultimately become directly or indirectly available to higher trophic levels. The relative significance of autochthonous and allochthonous detritus in the overall energy budget of the Apalachicola Bay System is still in question. The ultimate importance of detritus is indicated by the major groups of detritus-associated organisms found in this estuary.

This study was designed as a preliminary survey of the leaf-associated organisms in the Apalachicola Bay System with particular emphasis on seasonal variations and the relationship of the biotic associations with key physico-chemical parameters.

Methods and Materials
Stations were established on the basis of previously determined salinity regimes (Fig. 1). Station 5A, a predominantly freshwater habitat during spring and early summer, is characterized by salt water intrusion during late summer and fall periods. Station 3 is a river-dominated area with frequentincreases in benthic salinity during summer and fall periods.

Station IX has relatively high salinities throughout the year except during periods of high river discharge when intermediate salinity levels prevail.

Experiments in the field were carried out with specially designed detritus baskets. These baskets were constructed of plastic-coated hardware cloth ($6.5 \mathrm{~mm}^{2}$ mesh) shaped intocubes ($30.5 \mathrm{~mm} / \mathrm{side}$) with hinged tops. An inner fiberglass screen liner ($2 \mathrm{~mm}^{2}$) covered the sides and bottom of each basket. This allowed organisms access to the inside of the basket; when the basket was pulled to the surface, organisms were trapped inside. Baskets were weighted for stability. Leaf litter was collected along the banks of the lower Apalachicola River. Species composition of such litter was mixed, but consisted primarily of water oak (Quercus nigra), over-cup oak (Q. lyrata), red maple (Acer rubrum), and sweetgun (Liquidambar styraciflua). The leaves were air dried and placed in baskets (400 g . dry weight per basket) which were then situated at the various sampling sites. Sampling times were set according to seasonal fluctuations of key environmental parameters in the Apalachicola Bay System. Three periods were chosen (spring, April-May; summer, August-September; fall, OctoberNovember). During the spring series, seven baskets (containing leaves) and two controls (containing no leaves) were placed at stations $1 \mathrm{x}, 3$, and 5A. At weekly intervals over a four to six week period, the baskets were retrieved, and rinsed in a bucket of sea water. During each sampling, leaf matter was removed, placed into the water for a second time, and swirled to remove all organisms. The leaves were then placed in the respective baskets and returned to the bay. Organisms in the buckets were strained through a 297^{μ} sieve, washed into jars, and preserved in 10%
formalin. In the laboratory, they were identified to species, counted, and weighed (wet weight). The surrounding areas were then trawled (16 foot otter trawl; 2 2-minute trawl-tows at 2-3 knots), and collections were typed to species and counted. Representative organisms were preserved (10% formalin) for stomach content analysis. This procedure was followed in subsequent sampling periods until all the leaf matter was gone. Using the data from the first series of samples, it was determined that in each case, 95% of the species were taken by sampling any four baskets. Consequently, further sampling was continued using four experimental baskets and appropriate controls.

During each sampling period, certain physico-chemical parameters were monitored at the designated stations. Surface and bottom water samples were taken using a standard Kemmerer bottle. Water temperature (${ }^{\circ} \mathrm{C}$) and dissolved oxygen (ppm) were measured using a YSI Mode] 54 oxygen meter. Salinity was estimated with a temperature-compensated refractometer calibrated periodically with standard sea water. Water color (Pt-Co standard) was determined using a Hach colorimeter. Turbidity was measured using a Hach model 2100A laboratory turbidimeter ($\pm 2 \%$ of scale). All physical data were compared with those from a long-term ecological survey of the Apalachicola Bay system (Livingston, 1974).

The data were analyzed using an interactive computer program designed to handle comprehensive field data (Livingston, 1974). In addition to the usual richness (S, number of species) and enumerative (N, number of individuals) functions, several indices were used to evaluate the data. A modification (Pielou, 1966, 1967; Bechtel and Copeland, 1970; Borowitzka, 1972) of the Shannon-Weaver Index (Shannon and Weaver, 1963) was used
where N is the number of individuals in a sample and n_{j} is the number of individuals in the ith species. Species richness was determined using the Margalef Index (Margalef, 1958)

$$
D=\frac{S-1}{\log _{e} N}
$$

where S in the number of species and N is the number of individuals. The measurement of community similarity for interstation (temporal) comparisons was accomplished using the ci index of overlap (Morisita, 1959; Horn, 1966). This is a determination of the probability that two randomly drawn samples from populations X and Y will be the same species relative to the probability that two individuals of the same species will be drawn from populations X or Y alone.

$$
\lambda x=\frac{\sum_{i=1}^{S} x_{j}^{2}}{\frac{x^{2}}{S}} \quad \lambda y=\frac{\sum_{i=1}^{S} y_{i}^{2}}{y^{2}} \quad \lambda c=2 \sum_{i=1}^{S} x_{i} y_{i}
$$

where s is the number of species; x_{i} and y_{i} are the numbers of the i th species in populations X and Y respectively; X and Y are the total numbers in the two communities, and x and y are measures of diversity (Simpson, 1949) as modified for sampling with replacement (Horn, 1966). Data were broken down according to dominance-diversity curves (seasonal, by station) to present the relative distribution of species numbers in a given collection.

Station characteristics

A detailed analysis of the characteristics and distribution of sediment in East Bay, St. Vincent Sound, and Apalachicola Bay has been made (Kofoed and Gorsline, 1963; Stickney et al., 1969; Livingston et al., this report). Oyster bars are a major source of calcareous matter. The

Apalachicola Bay System is characterized by sand, silt, and shell components in various mixtures; St. Vincent Sound and northern portions of Apalachicola Bay are silty areas that grade into sand/sjlt and shell gravel as St. George Island is approached. Relic coarse (quartz) sands are covered by fine-grained material deposited by the Apalachicola River. East Bay is composed of silty sand and sandy shell. Relatively high turbidity and sedimentation have significantly reduced benthic macrophyte distribution in all but the shallowest (fringing) portions of the bay.

Station 5 A, approxiamtely 1 km south of the upper marshes of East Bay, has a monotonous silty-sand bottom with sparse (scattered) growth of Ruppia maritima. Trawl catches indicate the presence of Gracilaria foliifera. The upper coastline is fringed by beds of Vallisneria americana and upland marshes. Station 3, approximately 0.5 km north of the Gorrie Bridge, is a shallow area ($1-1.5 \mathrm{~m}$) subject to strong river action and tidal currents. Various forms of rubble (branches, logs, leaves, etc.), brought in by seasonally variable river flow are commonly found here. A sparse covering of Ruppia maritima is present. During summer months, there is extensive colonization and deposition of various species of blue-green and green algae. Water hyacinth (Ejchornia crassipes) is found along the shore. Marsh grasses in this area include Phragmites communis, Typha latifolia, and Juncus roemerianus. Station $1 X$, located just north of St. George Island, is dominated by Halodule wrightii. Various forms of benthic macrophytes such as Ulva lactuca and Gracilaria spp. are found here. A barrier oyster bar lies just offshore; inside this reef, detritus is deposited in the protected embayments by northerly and westerly winds. Considerable amounts of such detritus are found in this area. Various
marshes (Juncus roemerianus, Spartina spp.) fringe the island in this area. During periods of extensive discharge and/or tidal fluctuations, occasional deposits of leaf litter are found.

Although this portion of the report will concentrate on the preliminary determination of the litter associations, subsequent experiments have been carried out. Determinations using methods described above were made using 3 sets of baskets at Station 3. Each set of 4 baskets was filled with oak leaves, pine needles, or artificial (teflon) substrate; 12 baskets were set at Station 3 and collected at monthly intervals from July, 1975 to November, 1975. A third series of experiments was carried out at Stations 5A, 3, and $1 \times$ from January, 1976 to January, 1977. Four baskets of oak leaves were placed at each station at monthly intervals and the previous month's baskets were sampled. This was carried out to determine seasonal variation of litter associations. Although all samples have been taken, the data are still being analyzed and will not be presented here.

Results and Discussion

Physico-chemical parameters

A one year profile of various physical conditions in the three primary study sites is presented in Fig. 2. Water temperature varied little from one station to the next; peaks occurred during late summer months. Biological sampling took place during periods of increasing, peak, and decreasing water temperature levels. Peak river flows occurred during late winter and spring months. Increased turbidity paralleted river flow at Stations 3 and 5A. However, farther out in the bay, Station 1 X was characterized by constant low turbidity levels (being less affected by such flow). Local rainfall, out of phase with river flow, peaked during late
summer and early fall. Such rainfall was correlated with increased levels of color at inshore stations (3 and 5A). Color appeared to be more variable than turbidity and often had a direct relationship with salinity. Color was uniformly low at Station 1 X which, after a period of low salinity during the early spring of 1974 , also was characterized by uniformly higher salinities than the other two stations. Station $5 A$ had a low mean salinity over the study period with considerable seasonal variation. During spring months, salinity was not detected in this area. Increases in salinity occurred during summer and fall periods with significant variation due to local rainfall and runoff conditions. During the fall, there was a significant increase in color at Station 5 A which was not evident elsewhere to any degree. This factor will be studied in more detail in an analysis of clearcutting operations. Station 3, with somewhat higher mean salinities, reflected the same pattern although variation was somewhat less extreme and there were generally higher salinity levels during the spring than in more upland portions of the bay. The reduced influence of contiguous land areas on Station 3 was also reflected in the color data. Thus, the physical parameters at the three primary collection stations were based primarily on physiographic location, temporal variations of river flow and meteorological phenomena, and local rainfall and land runoff conditions.

Sampling efficiency
Multiple samples (7) were used to evaluate the method of collection. A composite species accumulation is shown in Fig. 3. Each point represents the mean number of species found in the 6 subsamples taken at weekly intervals from 9 April to 14 May. In each instance, an asymptotic relationship was reached by the fourth sample. Further analysis was carried out using a
modification of a program described by Livingston et a7., 1976. At each sampling period, fifty random draws were made of the 7 possible combinations of species. Numbers of species accumulated with each sample were averaged and plotted as a percentage of the total number of species taken for the 7 samples. The cumulative distribution function showed that at Station 3, between 90 and 95% of all species were taken by the fourth sample. At Station 5 A, these figures ranged from 90 to 97% during the sampling period with asymptotes routinely established by the fourth sample. An analysis was also made of the variablility in the determination of total numbers of individuals (N) taken within a group of subsamples. Analysis of variance (ANOVA) results from Station 5A indicated no significant variation of N from week to week. A theoretical standard error was calculated with confidence limits established to determine variation by sample ($\frac{\text { S.E. }}{X} \times 100 \%$) for a given set of samples. This permitted a comparison of the true mean of any number of samples with the mean for the total number of samples (42). At Station 5A, four samples of a given time period were within $\pm 30.8 \%$ of the mean ($p<0.05$). At Station 3 , the ANOVA results indicated marked differences in N from week to week. Consequently, data were analyzed on a weekly basis. The four samples taken in each period were within $\pm 51.0 \%$ of the mean ($p<0.05$). Thus, the data indicate that in terms of the number of species taken in a given set of samples, by the fourth sample, a representative S value was achieved at each site. At Station 5A, relatively unfform N values were noted from sample to sample so that four samples would again allow adequate sampling effort. However, at Station 3 , due to higher variability of N, more samples were necessary to achieve the same confidence level. Based on these data, it was determined that four
samples per station at a given time would be adequate for the purpose of this study. All further analysis was based on this sampling regime. Leaf Litter Associations

The results of the leaf basket experiments are shown in Tables 1 and 2. In every instance, there was a significant difference (in terns of numbers of species and individuals) between empty baskets and those containing leaf litter. The presence of organisms in empty sampling devices indicates that such enclasures could perform a shelter function in some instances. In terms of biomass (dry weight), more was associated with pine needles than oak leaves and a considerable amount was found in the baskets filled with teflon leaves indicating that the leaf matter itself may simply serve as a substrate for shelter and/or microbial accumulation. More information is needed here before a difinitive statement can be made.

Within and between station comparisons of species assemblages are shown in Table 3. There was usually a consistent within-station similarity with time. With one exception ($3-1 x$), marked interstation similarity coincided with moderate to high salinity levels. Although there was station to station variation in species associations, increased salinity was associated with interstation similarity which superceded geographic variation. Such changes were often characterized by increased dominance of species such as Gammarus mucronatus, Melita sp., Ericthonius brasiliensis, and Gitanopsis sp. Since such associations were most prevalent during the fall period of sampling, it is quite likely that factors other than salinity are also involved in the determination of species composition of the leaf litter associations. The most obvious seasonal function in this case would be water temperature. The low numbers of individuals at Station 5A
during the summer ran counter to trends in other portions of the bay, and could be related to an entirely different set of variables related to storm water runoff in the area,

Temporal variation of various community parameters is presented in Fig. 4. In terms of numbers of individuals (N), there was a general increase during the year of sampling at Stations 3 and $5 A$. At Station $1 x$, there was a decrease of N with time. Other parameters such as number of species (S), Margalef richness (Ma), and Shannon-Weaver diversity (H^{\prime}) increased at all three stations with time. Such indices usually peaked during the fall. Associated with this, there was a general decrease in relative dominance. Correlation coefficients of physico-chemical and biological functions are shown in Table 4. Relative dominance was negatively correlated with $H^{\prime \prime}$. High positive correlations were found between S and two parameters (Margalef richness and $\log N$). There were also significant correlations of salinity with $S, \log N$, and species richness. It appears that salinity is a primary determinant of leaf litter assemblages. Interstation relationships of salinity, S, and \log N are shown in Fig. 5. Regression analysis confirms these results ($F=30.4$; $R^{2}=0.45$ for salinity and $S ; F=13.2 ; R^{2}=0.26$ for salinity and $\log _{e} N$. . The numbers of species and individuals taken at a given time vary directly with salinity rather than station location. General salinity increases in the fall did coincide with increased similarity coefficients so that even qualitative changes in leaf litter fauna were not unrelated to salinity. The data would thus indicate that salinity is an important parameter concerning the leaf litter assemblages in the Apalachicola Bay System.

The allochthonous litter deposited in the Apalachicola Bay System thus attracts a considerable invertebrate fauna primarily composed of
isopods, amphipods, and decapods. Presumably, these crustaceans use this debris as a source of food and shelter. Various studies indicate that such species often depend on the microbial component of the detritus as food (Adams and Angelovic, 1970; Fenche1, 1970; Kaushik and Hynes, 1971; Odum and Heald, 1972). The details of the actual energy transfer mechanism are little known, however.

The small invertebrates are in turn consumed by larger organisms. A summary of trawl-susceptible organisms found in the vicinity of the leafbasket stations is shown in Table 5. Many invertebrate species (Penaeus spp., Palaemonetes spp., etc.) are detritovores, feeding on small fragments of organic matter deposited on or within the substrate (Odum and Heald, 1972; Nixon and Oviatt, 1973). Others, such as Callinectes sapidus, are omnivores (Tagatz, 1968). Major predators of the leaf-associated biota would be the fishes, primarily Bairdiella chrysura, Lagodon rhomboides, Orthopristis chrysoptera, Eucinostomous argenteus, and Cynoscion arenarius (Odum and Heald, 1972; Carr and Adams, 1973). As shown previously, leaf litter and other allochthonous forms of detritus are either indirectly or directly available to various estuarine organisms both as a primary substrate and as a source of smaller (fragmented) portions of the organic detrital pool. These trophic relationships will be analyzed in more detail elsewhere in this report.

In summary, various estuarine organisms were associated with mixed (deciduous) leaf litter that was dropped in baskets throughout the bay during 1974. Such species assemblages were dominated by amphipod, isopod, and decapod crustaceans. Qualitative and quantitative characteristics of leaf litter associations were highly correlated with salinity. Increased salinity was often accompanied by increased numbers of Gammarus
mucronatus, Melita sp., Erichthonius brasiliensis, and Gitanopsis sp. Salinity was directly correlated with the number of species(S), number of individuals ($\log _{\mathrm{e}} \mathrm{N}$), and Margalef richness (Ma). Such indices as Shannon-Weaver diversity (H^{\prime}), S, and Ma peaked during the fall; associated with this was a reduction in relative dominance ($\mathrm{D}_{\boldsymbol{j}}$) at this time. Experiments with leaf litter indicated that it was used for shelter and/or as a substrate for microbial deposition although this remained open for further analysis.

Organisms associated with leaf litter are part of the food webs of various estuarine systems. Therefore, although the direct (quantitative) energy relationships of such matter remain speculative, allochthonous detritus in river-dominated estuaries such as the Apalachicola System should be considered in any estimate of the total trophic structure of such systems.

Literature Cited

Adams, S.V. and J.W. Angelovic. 1970. Assimilation of detritus and its associated bacteria by three species of estuarine animals. Chesapeake Sci. 11(4): 249-254.

Bechtel, T.J. and B.J. Copeland. 1970. Fish species diversity indices as indicators of pollution in Galveston Bay, Texas. Contrib. Mar. Sci. 15: 103-132.

Borowitzka, M.A. 1972. Intertidal algal species diversity and the effect of pollution. Aust. J. Fresh. Res. 23: 73-84.

Carr, W.E.S. and C.A. Adams. 1973. Food habits of juvenile marine fishes inhabiting seagrass beds in the estuarine zone near Crystal River, Florida. Trans. Am. Fish. Soc. 102(3): 511-540.

Fenche1, T. 1970. Studies on the decomposition of organic detrius derived from the turtle grass Thalassia testudinum. Limnol. Oceanogr. 15(1): 14-20.

Horn, H.S. 1966. Measures of "overlap" in comparative ecological studies. Amer. Natur. 100: 419-424.

Kaushik, N.K. and H.B.N. Hines. 1971. The fate of dead leaves that fall into streams. Arch. Hydrobiol. 68(4): 464-515.

Kofoed, J.W. and D.S. Gorsline. 1963. Sedimentary environments in Apalachicola Bay and vicinity, Florida. J.Sed. Petrol. 33: 205-223.

Livingston, R.J. 1974. Field and laboratory studies concerning the effects of various pollutants on estuarine and coastal organisms with application to the management of the Apalachicola Bay System (North Florida U.S.A.). Final report, State University System of Florida. Sea Grant Program (R/EA-1).
\qquad . 1975. Resource Management and estuarine function with application to the Apalachicola Drainage System (North Florida, U.S.A.). Contribution to the National Estuarine Pollution Report (E.P.A.). 35 p. , R.L. Iverson, R.H. Estabrook, V.E. Keys, and J. Taylor, Jr. 1974. Major features of the Apalachicola Bay System: Physiography, biota and resource management. Floirda Sci. 37(4): 254-271. , G.C. Woodsum, and J.E. Jernigan. 1975. An interactive computer program for analysis of comprehensive (long-term) field data. (In review).
\qquad , R.S. Lloyd, and M.S. Zimmeman. 1976. Determination of sampling strategy for benthic macrophytes in polluted and unpolluted coastal areas. Bull. Mar. Sci. 26, 569-575.

Margalef, R. 1958. Information theory in ecology. Gen. Syst. 3: 36-71.
Morisita, M. 1959. Measuring of interspecific association and similarity between communities. Mem. Fac. Sci. Kyusha Univ. 3: 65-80.
Nixon, S.W. and C.A. Oviatt. 1973. Ecology of a New England salt marsh. Ecol. Monogr. 43(4): 463-498.

Odum, W.E. and E.J. Heald. 1972. Trophic analyses of an estuarine mangrove community. Bull. Mar. Sci. 22(3): 671-738.

Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13: 131-144. . 1967. The use of information theory in the study of the diversity of biological populations. Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability 4: 163-177.

Shannon, E.C. and W. Weaver. 1963. The mathematical theory of communication. University of Illinois Press, Urbana.

Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688.

Stickney, R., P. McCaffrey, and M. McGee. 1969. Sediment patterns in Apalachicola Bay, Florida, in relation to penaeid shrimp distribution. In: R.W. Menzel and E.W. Cake, Jr. (eds.) Identification and analysis of the biological value of Apalachicola Bay, Florida. Unpublished report to F.W.P.C.A.

Tagatz, M.E. 1968. Biology of the blue crab, Callinectes sapidus Rathbun, in the St. John's River, Florida. Fishery Bull. 67: 17-33.

Table 1: Total numbers of leaf-litter associated organisms taken at 3 stations in Apalachicola Bay during the spring, summer, and fall of 1974.
SPRING (April-May) SUAMER (August-September) FALL (October-Novemher)
Totals: 4 baskets with 2 controls (no leaves) - samples weekly, 4-6 weeks

Natition Meciduato	802	152
Putomituretes puyio	20	73
Comephisen towisicommy	242	5
C-mmaris th. (2)	218	10
Gemertw mucionatus	130	
Grendiciretite buxmianciden	107	
	988	B
Collinectes mpidus	34	$i l$
Molite sp.	37	
Compus ip.	45	1
Murne reyrolti;	7	
Couidinideo orolit	3	
Leprochelia repte	3	
Fisher		
	21	6
Braverria patrowes	,	
Syngrothers scowell		I

Hemertebrater		
Cemaphiom boutgianum	40N	45
Fephrorrytis bownemi	379	2
Grundicifello bommoides	240	
Nuritima reclivata	186	J0
Matios ip,	7	
Goinmotul mucrenotus	29	1
Collinmetes sapidus	22	
Muntere reynoldsi	20	3
Amouns stiferus	18	2
Gammane se, (2)	16	
Promenosates pugio	15	1
	7	
Comput sp.	7	1
Eromepois \%p.	7	
Edotoe mamose	5	
Comidinites tralis	4	
Sphoertina turebrats	1	
Finat		
Gehioment boxei	4	9
teirdietlo ehrysum	7	2
Singmathus Floridoe	2	

Erichumus braviliemis	2.15
Gammary muatomitus	1.1
Numbe teymoheri	1.ご
Ginamponis ip.	t, id
Polyodoris mobsteri	,
Melito sp,	i,
Comophinm louiviunu	
Cossidinidea ovalis	H2
Nepathes succimeg	
Collinecres sopidus	
Nutifite reclivato	.
Arlowmoneres vuigoris	\because
Grandicfortho benmiersioes	4
Edotea montos	; 3
Cerames 4 P.	\%
Whithroporropeus harrisi]	1
Meline fremelii	
Cymodusa filasa	
Ampeliscon obdira	-
Nemertwans	2
Sphoterome quadridentutum	
Pengaus dioroinm	
Percmetapella eypris	
Porranaites specioys	
A., tidequis bigelowi	

Germanis

Corbpi um louitionem
Numar ranoldsi
Caswidinidea ovalis
Meline ip
Bittivan varium

Callincmeres uligar.s
Cempers sp.
Natiting recfivate
Chelif repa
holydore westeri
Thithropanopeus hatrisii
Amphictois gunneri
Nemerteons

Fithes
Gobicsemp borci
Lerfartas grisou:

3

$$
100
$$

	Fimm maves	mirmont ine
Invertiondta		
	t,662	12
Coninith mucronetus	3 HC	16
Crmadusa top.	605	40
Ertecthonios trastitersis	417	26
Comilinideo ovelis	255	14
Neprthest mectioms	19	15
Gitureprix 4p.	152	
Podprike sp.	41	
Alomonetes wulgaris	14	15
Nemerteoms	59	
Crapidula plono	45	
Leprochelio ropea	38	4
Biftimen meiva	27	5
Corcphism loristamum	19	1
Happloscolaplor fogidis	!	2
Grichsondile filiformit	13	
Fepricio ap.	3	
Anothis divare	7	2
Noepturopp terisia	7	
Ederea mentime	6	
Maritiop reclivata	\$	
Potydora meturturi	5	\%
	5	5
Clymenalita m.	4	
Perama llat apmicono	2	
Pennevs duonnium	2	
Colliencies mprilus	2	1
Hemigenop mitmits	1	
Demumeiciprecm	1	
		1

1. Sumary of organisms associated wiu: dak leaves at station 3 (East Bay) from 15 July , 1975 to 15 Novenber, 1975

SPECIES	$\begin{aligned} & \text { SAMPLE } \\ & 750715 \end{aligned}$	DATES 750815	751015	751115	TOFALS
CALSAP	$\begin{aligned} & 26.55 \\ & 82.35 \end{aligned}$	$\begin{array}{r} 9.48 \\ 41.28 \end{array}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{array}{r} 1.90 \\ 35.94 \end{array}$	$\begin{aligned} & 3 / .92 \\ & 62.27 \end{aligned}$
NERREC	$\begin{array}{r} 5.16 \\ 16.01 \end{array}$	$\begin{aligned} & 11.51 \\ & 50.09 \end{aligned}$	$\begin{array}{r} .11 \\ 26.54 \end{array}$	$\begin{array}{r} 1.33 \\ 25.12 \end{array}$	$\begin{aligned} & 1 y .10 \\ & 2 y .73 \end{aligned}$
RHIHAR	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.84 \\ & 8.01 \end{aligned}$	$\begin{array}{r} .31 \\ 72.19 \end{array}$	$\begin{array}{r} 1.84 \\ 34.89 \end{array}$	$\begin{array}{r} 3.99 \\ 6.55 \end{array}$
Palpug	$\begin{array}{r} .47960 \\ 1.49 \end{array}$	$\begin{array}{r} .04360 \\ .19 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .04360 \\ .83 \end{array}$	$\begin{array}{r} .56080 \\ .93 \end{array}$
gammac	$\begin{array}{r} .03861 \\ .12 \end{array}$	$\begin{array}{r} .06110 \\ .27 \end{array}$	$\begin{array}{r} .00325 \\ .76 \end{array}$	$\begin{array}{r} .03549 \\ .67 \end{array}$	$\begin{array}{r} .13045 \\ .23 \end{array}$
PALVUL	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .09720 \\ 1.84 \end{array}$	$\begin{array}{r} .0 צ 720 \\ .16 \end{array}$
GAMNSP	$\begin{array}{r} .00108 \\ .00 \end{array}$	$\begin{array}{r} .00486 \\ .02 \end{array}$	$\begin{array}{r} .00108 \\ .25 \end{array}$	$\begin{array}{r} .01566 \\ .30 \end{array}$	$\begin{array}{r} .02<68 \\ .04 \end{array}$
MELINT	$\begin{array}{r} .00132 \\ .00 \end{array}$	$\begin{array}{r} .01684 \\ .07 \end{array}$	$\begin{array}{r} .00012 \\ .03 \end{array}$	$\begin{array}{r} .00 .580 \\ .07 \end{array}$	$\begin{array}{r} .02<08 \\ .04 \end{array}$
MUNRET	$\begin{array}{r} .00129 \\ .00 \end{array}$	$\begin{array}{r} .00804 \\ .04 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00607 \\ .15 \end{array}$	$\begin{array}{r} .01740 \\ .03 \end{array}$
CASOVA	$\begin{array}{r} .00330 \\ .01 \end{array}$	$\begin{array}{r} .00363 \\ .02 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00308 \\ .06 \end{array}$	$\begin{array}{r} .02001 \\ .02 \end{array}$
GRABON	$\begin{array}{r} .00306 \\ .01 \end{array}$	$\begin{array}{r} .00066 \\ .00 \end{array}$	$\begin{array}{r} .00072 \\ .17 \end{array}$	$\begin{array}{r} .00306 \\ .06 \end{array}$	$\begin{array}{r} .00750 \\ .01 \end{array}$
DICSPE	$\begin{array}{r} .00003 \\ .00 \end{array}$	$\begin{array}{r} .00150 \\ .01 \end{array}$	$\begin{array}{r} .00021 \\ .05 \end{array}$	$\begin{array}{r} .00108 \\ .02 \end{array}$	$\begin{array}{r} .00<82 \\ =00 \end{array}$
Crapol	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00234 \\ .04 \end{array}$	$\begin{array}{r} .00<34 \\ .00 \end{array}$
CORSPE	$\begin{array}{r} .00056 \\ .00 \end{array}$	$\begin{array}{r} .00014 \\ .00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00070 \\ .00 \end{array}$
CORLOU	$\begin{array}{r} .00002 \\ .00 \end{array}$	$\begin{array}{r} .00018 \\ .00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00010 \\ .00 \end{array}$	$\begin{array}{r} .00030 \\ .00 \end{array}$
TAPBOW	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00019 \\ .00 \end{array}$	$\begin{array}{r} .00019 \\ .00 \end{array}$
AMPGUN	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00014 \\ .00 \end{array}$	$\begin{array}{r} .00014 \\ .00 \end{array}$
TURSPE	$\begin{array}{r} .00002 \\ .00 \end{array}$	$\begin{array}{r} .00012 \\ .00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00014 \\ .00 \end{array}$
GITSPE	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00007 \\ .00 \end{array}$	$\begin{array}{r} .00007 \\ .00 \end{array}$
CERSPE	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} 0.00000 \\ 0.00 \end{array}$	$\begin{array}{r} .00006 \\ .00 \end{array}$	$\begin{array}{r} .00006 \\ .00 \end{array}$
	32.2	23.0	. 4	5.3	00.9

Alyrote. 13.43.22. 77/02/23.

AIYY076. 13.43.21.77/02/23.
3. Summaro of man ... 247
leaves of organisins asscciated with artificial (teflon) leaves at station 3 (East Bay) from 15 July, 1975 to
15 November, 1975

nivva76. 13.43.22.77/02/23.
248.

Table 3 c $\begin{gathered}\text { values for interstation comparisons during the three sampling }\end{gathered}$ periods. Seasonal (within station) comparisons are also show.

Data analyzed include leaf litter associated invertebrates in Apalachicola Bay. Spring Suminer

Fall

Table 4: Comparison of Correlation Coefficients (and P values) of Major Physical and Biological Parameters Concerning Leaf Litter Associations (invertebrates) in the Apalachicola Bay System.

nhes
Sairdiella chrysura 523
Lagodon rhomboides 372
Orthopristis chrysoptera 205
Ejcinostom;s argenteus 169
Cynoscion nebulosus 71
Eucinostomus gula 43
Lucania parva 26
Microgobius gulosus 20
Syngnathus scovelli $\quad 17$
Monacanthus hispidus 13
Sphorroides nephelus . 8
Chilomycterus schoepfi 8
Anchoa mitchiili 7
Cynoscion arenarius 6
Lutianus griseus 6
Synodus foetens 6
Dajyatis sabina 4
Syngnathus lovisianae 3
Hypoblennius hentzi 2
Poralichthys lethostigma 2
Prionotes tribulus 2
Sciaenops ocellata I
Leiostomes xanthurus I
Gobionellus boleosoma 1
Eiropus crossotus 1
Contropristis melana I
Anchoa hepsetus I
Menticirhus americanus 1

3

Anchoa mitchilli	168
Cynoscian arenarius	106
Eucinostomus argenteus	37
Cynoscion nebulosus	11
Syngnathus scovelli	8
Micropogon undulatus	3
Microgobius thalassinus	2
Syngnathus louisianae	1
Syngnathus floridae	1
Prionustus scitulus	1
Menticirrhus americanus	1
Gobiosoma robustum	1
Bathygobius soporator	1
Arius felis	1

5A
Cynoscion arenarius 204
Anchoo mitchilli 142
Opisthonema oglinum 18
Eucinostomus argenteus 10
Bairdiella chrysuro 5
Cynoscion nebulosus 4
Trinectes maculatus 4
Prionotus scitulus 3
Lagodon rhomboides 2
Arius felis 2
Syngnathus louisianae 2
Sphoeroides nephelusMicropogon undulatusMicrogobius thalassinusMicrogobius gulosusGobiosoma bosciGobionellus boleosoma
Penaeus setiferus 320
Callinectes sapidus 35
Penaeus azfecus 21
Penaeus duorarum 10
Palaemonetes vulgaris 6
Palaemonetes pugio 3
Rhithropanopeus harrissi Lolliguncula brevis
5
ricetes cmericonus 2
Hupanope texena 1
Chommatios vittotus 1
Pertiondes
Pacermonetes vulgaris 306
Tozeuma carolinense 57
Periclimenes longicaudade 444
Penaeus artecus 30
Paees dioratum 20
Penceus seifferus 5
Hippolyte pleuracantha
Penaeus setiferus 285
Penaeus duorcrum 21
Callinectes sapidus 15
Penaeus aztecus 5
Neritina reclivata 4
Palaemoneyes pugio 2
Acetes americanus 1

Figure 1: The Apalachicola Bay System showing sampling stations, oyster bars, and marshes.

Figure 2: Apalachicola River flow, local rainfall, and physical parameters (temperature, salinity, color, turbidity) at primary sampling stations from January to December 1974.

Figure 3: Species accumulation curve of leaf litter invertebrates taken at stations 3 and 5A in Apalachicola Bay during the spring (1974). Each point represents a mean of the number of species taken in each sub-sample over the period of collection.

Figure 4: Total number of individuals (N), species (S), relative dominance (0) Shannon-Weaver diversity (H^{i}) and Margalef richness of leaf litter invertebrates taken at 3 sampling sites in Apalachicola Bay during 1974.

IX.

Benthic infauna

An investigation was made concerning the benthic infauria in the Apalachicola Estuary. Benthic macroinvertebrates are considered good indicators of water quatity due in part to their limited motility. Portions of East Bay and Apalachicola Bay were sampled to determine seasonal changes and spatial relationships of biomass, species composition, and community structure.

Methods and Materials

Permanent stations were chosen in established areas of 5 tudy (Fig. 1; $1,1 x, 3,4,4 A, 5 A, 5 B, 6$). A hand operated corer (d. 7.7 cm) was used and 10 subsamples were taken monthly to depths of 15 cm at each station (1, 1x, 3, 6; from March, 1975 to February, 1976: 4, 4A, 5A, 5B; from February, 1975 to the present). All samples were washed through a 0.5 mm screen and fixed in 10% formalin. Rose bengal was added at a concentration of $200 \mathrm{mg} / 1$ (Mason and Yevich, 1967). Animals were rough sorted and placed in 40% isopropyl alcohol, identified to species, and counted. Biomass (ash-free dry weight) was determined by oven drying each sample at $100^{\circ} \mathrm{C}$ for 12 hours. After weighing the sample, it was heated at $500^{\circ} \mathrm{C}$ for four hours. Standard determinations for each species were made using 100-200 individuals for computations of mean dry weight/individual. This was then used for all conversions to biomass.

Station descriptions, methods, results of physico-chemical sampling, and other supportive data appear elsewhere in this report.

A list of species taken is presented in Table 1. The 17 most abundant species are described below:

Leptochelia rapax (Crustacea, Tanaidaceans)
This crustacean was the most abundant invertebrate taken from infaunal samples in Apalachicola Bay. It was almost entirely restricted to the Halodule wrightij beds on the inner side of St. George Island where it builds tubes on the substrate or attached to seagrass blades. In this area, the salinity ranged from 6.3-26.8\% $\% 0$ and the water temperature ranged from $11.5-32.5^{\circ} \mathrm{C}$. Peak abundances were noted in the spring (February - April) with lowest numbers found in September. Tanaidaceans in general are hermaphroditic (Barnes, 1968); ovigerous females were noted throughout the year, being most abundant in the spring, as were individuals showing male characteristics. Leptochelia apparently feeds on fine detrital matter, sand, and benthic diatoms, and is preyed upon by small carmivorous fishes (Odum and Heald, 1972).

Grandidierella bonnieroides (Crustacea, Amphipoda)

This species was the second most abundant organism taken in the core samples. It ranges from the Halodule beds on the inner side of St. George Island up into the freshwater areas of East Bay, where it was most abundant. It was found in salinities of $0-26.8^{\circ} \%$ and water temperatures of $6.0-32.5^{\circ} \mathrm{C}$. Abundance peaks were noted in early spring (March) and late summer (August), with lowest numbers during early summer (May) and intermediate abundances in winter months. Ovigerous females were collected from November through April. Grandidierella feeds upon very fine detrital matter and is in turn con-
sumed by small carnivorous fishes (Odum and Heald, 1972).
Heteromastus filiformis (Polychaeta, Sedentaria)
This polychaete ranked third in the bay in terms of overall abundance of numbers even though it was largely restricted to grass beds (dominated by Halodule wrightii) just inside St. George Island (1X). Peak abundance was noted in April with low numbers taken during October and November, corroborating the findings of Santon and Simon (1974). This species was collected over a range of salinities from $6.3-26.8^{\circ} / 00$ and temperatures from $11.5-32.5^{\circ} \mathrm{C}$.

Mediomastus californiensis (Polychaeta, Sedentaria)
As the fourth most prevalent species of infauna, this polychaete inhabits fine mud bottoms throughout the bay, ranging in length from 20 40 mm . It occurred in salinities from $0-18.8^{\circ} / 00$ and temperatures from $6-31^{\circ} \mathrm{C}$. Peak abundance occurred in March with lows in the summer (July - August).

Ampelisca vadorum (Crustacea, Amphipoda)
Ampelisca vadorum was the fifth most abundant organism collected. It was almost entirely restricted to the St. George Island grass flats, where it builds weak tubes on (or slightly within) the substrate. This crustacean was found to be nocturnally active. It was found at salinities of 6.3-26.8 $/ 00$ and water temperatures of $11.5-32.5^{\circ} \mathrm{C}$. Peak abundance was noted in the spring (February) with a minor peak in early fall (October). Ovigerous females were noted in all months of the year (except August), with a peak in February. This organism is probably omnivorous, feeding mainly on detrital particles: it is preyed upon by small carnivorous and (at night) planktivorous fishes.

Streblospio benedicti (Polychaeta, Sedentaria)

This species of polychaete was the sixth most abundant form of benthic infauna in the bay. This worm utilizes a variety of habitats in the Apalachicola Bay System including Halodule beds on the bay side of St. George Island and fine mud flats in East Bay. Ranging from 10 20 mm in length, this species secretes a thin membranous tube in salinities from $0-26.5^{\circ} \%$ and temperatures from $6-32^{\circ} \mathrm{C}$.

Amphicteis gunneri floridus (Polychaeta, Sedentaria)

As the seventh most abundant form of benthic invertebrate in the Apalachicola estuary, this polychaete is found throughout the bay from the grassbeds of St. George Island to oligohaline mud flats in East Bay. It was found in salinities ranging from $0-26.8^{\circ} / 00$ and temperatures from $6-32.5^{\circ} \mathrm{C}$. peak abundance was noted in September with low numbers observed in the summer (May - August).

0ligochaete sp. 2
This unidentified oligochaete was found to be the eighth most abundant form of infauna in the Bay. This organism was restricted to a Halodule bed on the inside of St. George Island. It ranges from 20 - 40 mm in length. Salinity varies in this area from $6.3-26.8^{\circ} / 00$ and temperatures range from $11.5-32.5^{\circ} \mathrm{C}$. Peak numbers occurred in winter and early spring with low numbers in August and September.

Aricidea fragilis (Polychaeta, Sedentaria)
This polychaete species was the ninth most prevalent form of benthic infauna and was largely restricted to the St. George Island Halodule grass beds. It ranges from $10-20 \mathrm{~mm}$ in length and was found in salinities from 6.3-26. $8^{\circ} / 00$ and temperatures from 11.5-32.5 ${ }^{\circ} \mathrm{C}$. Peak numbers occurred in April with low numbers taken during the fall (September - October).

Dicrontendipes Sp. (Insecta, Diptera)
Dicrontendipes was the tenth most abundant species collected. It was mainly found in oligohaline marsh embayments in East Bay in salini ities of $0-10^{\circ} / 00$ and temperatures of $6-31^{\circ} \mathrm{C}$. Peak abundance was noted in late fall and winter (November - February). Chironomid larvae are generally herbi vorous, feeding upon submerged plants, algae, and detritus, and being consumed by predatory invertebrates and fishes (Odum and Heald, 1972).

Cerapus sp. (Crustacea, Amphipoda)
Cerapus SP., apparently an undescribed species (E.L. Bousfield, pers. comm.), was the eleventh most abundant organism collected. Cerapus builds tubes attached to the substrate and often forms large colonies. It is also known to detach a small portion of the tube and enter the plankton of Apalachicola Bay (H. Lee Edmiston, pers. comm.) : It was mainly found in riverine and oligohaline marsh embayments in East Bay at salinities of $0-10^{\circ} / 00$ and temperatures of $10-30^{\circ} \mathrm{C}$. Peak abundances were noted in late spring and summer months. Ovigerous females were noted in May through July. Although its food habits are unknown, Cerapus sp. may utilize its long antennae, which are abundantly covered by setae, either to filter the water column or scrape the surface of the substrate. Both small carnivorous fishes (Gobiosoma bosci) and planktivorous fishes (Anchoa mitchilii) are known to feed upon Cerapus in Apalachicola Bay.

In general the polychaetes mentioned above were eury therma? and euryhaline species, and were composed largely of selective and non-selective deposit feeders. These species are usually preyed upon by predacious polychaetes, crustaceans, and benthic fishes.

Biomass figures are shown in Table 2. Large transients (i.e., Callinectes, Penaeus, Rhithropanopeus) were excluded from this analysis since they were sampled elsewhere and were not considered a part of the infaunal assemblage. Biomass was highest at stations $i x, 5 A$, and 3 . In all portions of the Bay, biomass of the infauna peaked during winter and spring months. A more detailed analysis of these data will be developed in the analysis of the impact of clearcutting practices in Tate's Hell Swamp on the estuarine system.

Table 1: Invertebrates taken in cores, leaf-basket samples, and dredgenets in the Apalachicola Bay System (1975-1977)

Mollusca

Pelecypoda

Tagelus plebeius
Amygdalum papyria
Ensis minor
Tellina texana
Dosinia elegans
Mulinia lateralis
Rangia cuneata
Crassostrea virginica
Pseudocyrena floridana
Mactra fragitis
Macoma mitchelli
Spisula solidissima
Congeria leucophaeta Abra aedualis

Gastropoda
Odostomia laevigata
Prunum apicinum
Odostomia bisuturalis
Mangelia sp.
Retusa canaliculata
Anachis avara
Littoridina sphinctostoma
Mitrella lunata
Bittium varium
Neritina reclivata
Epitonium rupicola Crepidula plana

Polychaeta
Sedentaria
Amphicteis gunneri floridus
Polydora tigni
Streblospio benedicti
Paraprionospio pinnata
Mediomastus californiensis
Capitella capitata
Heteromastus filiformis
Capitellides jonesi
Prionospio heterobranchia
Errantia
Glycinde solitaria
Loandalia americana
Laeonereis culveri
Sigambra bassi
Neanthes succinea
Phyllodoce fragilis
Polyodontes lupina
Ancistrosyllis sp.
Oligochaeta

$$
\text { sp. } 1 \text { sp. } 2
$$

Arthropoda
Branchiura
Argulus sp.
Arenicola cristata
Melinna maculata
Aricidea fragilis
Magelona polydentata
Diopatra cuprea
Fabricia sp.
Spiophanes bombyx
Onuphis sp.

Haploscoloplos fragilis
Eteone heteropoda
Scoloplos rubra
Amphinome rostrata
Marphysa sanguinea
Podarke sp.

Table 1 continued

Mysidacea

Taphromysis bowmani
Bowmaniella dissimilis
Mysidopsis bahia
Taphromysis louisianae
Cumacea
sp. 1
sp. 2
sp. 3

Tanaidacea

Leptochelia rapax
Tanaid \#2
Isopoda
Sphaeroma quadridentatum
Sphaeroma terebrans
Cyathura polita
Erichsonella filiformis
Amphipoda
Gammarus mucronatus
Gammarus n.sp. '
(G. "macromucronatus")

Gammarus n. sp. 2
Melita appendiculata
Melita nitida
Melita n. sp. 1 (M. "elongata")
Melita n. sp. 2 (M. "intermedia")
Melita n. sp. 3 (M. "longisetosa")
Cerapus n. sp.
Corophium louisianum
Batea catharinensis
Turbellaria
sp. 1 (?)
Rhynchocoela
sp. T(?)

AscheIminthes

Nematode
Phoronida
Phoronis architecta
Insecta (underlined if genus known)
Anisopteran \#1
Anisopteran \#2
Caenis sp.
Callibaetis sp.
Ceratopogonid \#1
Chironomid \#2
Corixid \#1
Dicrontendipes sp.
Dipteran \#l (non-aquatic)
Nymphula sp.
7innntanan \#1

Mysidopsis bigelowi
Mysidopsis almyra
Mysidopsis sp. 4 \& sp. 5

Edotea montosa
Xenanthura brevitelson
Munna reynoldsi
Cassidinidea ovalis

Grandidierella bonnieroides
Ampelisca vadorum
Ampelisca verrilli
Carinobatea sp.
Cymadusa compta
Gitanopsis n. sp.
Paracaprella tenuis
Microsprotopus n. sp.
Parametopella cypris
Orchestia uhleri

Table 2: Biomass (ash-free dry wgt., G/M2) of benthic infauna in the Apalachicola Estuary (excluding Calinectes sapidus. Penaeus spp., and Rhithropanopeus)

DATE	STATIONS							
	IX	1	3	4	4A	5A	5 B	6
2/75				0.592	1.205	7.211		1.359
3/75	19.508	0.241	4.753	1.227	1.468	7.781		0.526
4/75	56.378	1.074	5.129	1.074	0.898	5.019		0.613
5/75	13.743	1.644	2.608	1.994	0.460	7.277	0.416	0.153
6/75	15.957	1.512	4.384	0.197	0.065	6.334	0.306	1.293
7/75	4.690	0.635	1.709	0.328	0.767	1.161	0.109	0.569
8/75	7.365	0.854	3.265	2.301	0.504	1.950	0.021	1.008
9/75	7.832	1.490	1.994	1.841	2.082	2.717	0.065	1.205
10/75	9.314	3.068	2.321	0.679	2.520	4.690	2.476	0.152
11/75	7.080	0.635	2.586	0.460	1.446	0.591	0.372	1.249
12/75	9.074	1.337	2.338	0.920	0.876	9.469	3.178	0.328
1/76	13.261	4.932	1.578	1.534	0.723	9.359	2.564	0.964
2/76	27.354	0.797	2.410	0.109	0.766	6.554	2.630	0.613
3/76				1.139	0.438	4.186	0.679	
4/76				2.783	0.153	2.411	0.742	
5/76				1.753	0.372	1.578	0.350	
6/76				1.424	0.175	0.591	0.043	
7/76				0.854	0.284	1.490	0.087	
8/76				0.394	3.441	1.885	0.175	
9/76				0.591	1.753	0.731	0.043	

12 month means

15.96	1.45	2.92	1.06	1.05	5.24	1.21	0.72

Although there is limited benthic macrophyte development in the Apalachicola Bay System relative to contiguous areas along the Gulf coast (Zimmerman, 1974; Zimmerman and Livingston, 1975, 1976; Livingston et al., 1976), various shallow areas of St. George Island and East Bay are characterized by macrophyte associations. A project was thus designed to determine the seasonal variation of Vallisneria beds in East Bay in terms of plant biomass and the associated assembages of organisms. In addition, sampling sites were placed in such a way to determine the potential effects of storm water runoff from the clear-cut areas in the Tate's Hell Swamp. Methods and Materials

Macrophyte samples were taken in two grassbed areas (stations 4a and 4b; Fig. 1). These were dominated by Vallisneria americana. A detajled analysis of sampling criteria is given by Livingston et al. (1976). Samples were taken monthly from November, 1975 to October, 1976. Vegetation was sampled by haphazardly throwing $80.25 \mathrm{~m}^{2}$ hoops at each station and gathering all plant matter within each hoop. The plant matter was placed in plastic bags, and the samples were taken to the laboratory where they were washed, sorted to species, and identified. Collections were dried in ovens at $105^{\circ} \mathrm{C}$ for about 12 hours (until there was no further weight loss). Total (whole plant) dry weight for each species was determined and recorded by station, and data were entered into the computer files as biomass (dry weight)/m².

The species Vallisneria americana composed 99% (+) of the overall biomass. Consequently, an effort was made to estimate the productivity of this species from periodic standing crop measurements according to a
method developed by Westlake (1965). Vallisneria, as a perennial, dies off in the late fall of each year. Minimal biomass was determined by averaging the dry weight figures taken during the dormant period (i.e. the winter months) and subtracting this from (summer) biomass figures at each station. The confidence limits were broad due to extreme seasonal and spatial variabilfty; maximal biomass for station $4 a$ was calculated from June rather than September (which is when biomass peaks were actually observed).

Physico-chemical data were taken according to methods described earlier in this report. Sampling for grassbed organisms was carried out in identical fashion at stations $4 a$ and $4 b$ during the day and the succeeding night (about one hour after sunset). Six one-minute trawl tows (at speeds of about 1.5 kncts) were made using a 32 cm dredge net (D-net) (nyton bag: 1 mm mesh) for benthic sampling and a 30 cm plankton net (1mm mesh) for the surface biota. Sampling was carried out in such a way that the same volume of water ($15 \mathrm{~m}^{3} / 6$ samples) was sampled by each net. All organisms were preserved in 10% formalin in the field and later washed and transferred to 40% isopropyl alcohol in the laboratory. Samples were sorted, identified to species, measured, and counted. Data were entered in files of the interactive computer system (described by Livingston and Woodsum in this report), and biomass transformations were made according to previously described procedures. Results and discussion

Measurements of biomass in the East Bay grassbeds are shown in Table 1 and Fig. 2. Differences in the spatial distribution of such macrophytes were responsible for some month to month variability as a result of the sampling methods used. It was estimated that some Vallisneria leaves had died by September and the generally high levels of biomass at this time were considered
an artifact of the sampling procedures. Consequently, biomass maxima for estimates of productivity were taken from the June data. Losses due to grazing were considered negligible and there was no observable leaf loss prior to August. There was some loss of female flowering parts prior to the summer maxima which could have made the productivity estimates somewhat conservative. This was probably counterialanced by the presence of unremoved epiphytes, although few calcified epiphytes were observed throughout the period of sampling. The grassbeds at Station $4 A$ showed higher biomass than those at Station $4 B$ although the seasonal patterns were generally similar with low biomass occurring during winter and early spring months (December - April) and high biomass during the summer and early fall (June - October). Transition periods occurred in November and May with the first new growth noted in March. Leaves reached the surface by April, and leaf death was first sighted in August. Productivity figures (Table 2) were comparable in both study areas.

The top 10 species in terms of biomass are given in Table 3. As shown, the gastopod Neritina reclivata was a strong dominant in the area of study. Monthly biomass figures for the study areas are shown in Table 4. The figures at stations 4 A and 4 B are comparable with generally higher figures at depth except during the period from May to July when peak values in surface collections were taken. Peak biomass figures were evident in both areas during spring (March-May) and late fall (November-December) periods. This roughly coincided with periods of transition in grassbed areas (i.e., growth and death) and probably reflected changes in habitat associated with shelter-seeking and feeding functions of the individual species.

These data have been analyzed in a report concerning the effects of clearcutting on the Bay system.

Table 1: \quad Biomass $\left(\mathrm{g} / \mathrm{m}^{2}\right)$ of macrophytes taken in East Bay. Values include root stocks and uncalcified epiphytes.

DATE	4A	4B
11/02/75	455.7	334.4
12/14/75	200.6	213.0
1/17/76	287.2	167.8
2/18/76	206.8	263.2
3/20/76	269.2	196.6
4/20/76	220.8	138.6
5/20/76	316.9	268.1
6/18/76	563.0	354.9
7/17/76	358.4	568.4
8/14/76	538.8	365.6
9/11/76	585.1	489.8
10/10/76	486.9	438.7
Total	4,489.4	3,799.1
Mean/month	374.1	316.6

Table 2: Estimated productivity of Vallisneria beds in East Bay.Data were taken from November, 1975 through October, 1976.
Round Bay (4a)
Mean winter biomass: $241 \mathrm{~g} / \mathrm{m}^{2}$ (Dec. - Mar.) 95\% Confidence interval: ± 122
$563 \mathrm{~g} / \mathrm{m}^{2}$ (June) 95\% Confidence interval: $\pm T 22$
Max. summer biomass: $568 \mathrm{~g} / \mathrm{m}^{2}$ (July) ± 121

West Bayou (4b)$215 \mathrm{~g} / \mathrm{m}^{2}$ (Dec. - Feb.)± 54
new growth occurred in Mar 04BMar © $4 B$
$\frac{\text { Change in biomass }}{\text { or }}$
Max. cumulative net production:

Productivity:
$353 \mathrm{~g} / \mathrm{m}^{2}$
$322 \mathrm{~g} / \mathrm{m}^{2}$
Table 3: Top dominants (fishes and invertebrates) at Stations 4a and 4 b (East Bay) in terms of biomass (dry weight) taken over the 12 month sampling period (November, 1975-0ctober, T976)
Species Percentage of total
Neritina reclivata 95.67
Callinectes sapidus 0.79
Palaemonetes pugio 0.73
Menidia beryllina 0.43
Syngnathus scoveTli 0.43
Zygoptera sp. 0.41
Lucania parva 0.26
Taphromysis bowmanni 0.24
Gamma rus macromucronatus 0.18
Odostromia sp. 0.11

INVERTEBRATES*

Introduction

This analysis will include 5 years of information concerning longterm fluctuations of epibenthic assemblages in the Apalachicola Estuary. Portions of this report have been statistically analyzed and cover the first 4 years of sampling (March, 1972 - February, 1977). Data analysis includes trends in the movement of organochlorine compounds through the system during first 3 years of study.

Laboratory effects of organochlorine compounds such as DDT and the polychlorinated biphenyls (PCB's) on aquatic organisms have been well documented (Johnson, 1968; Walsh, 1972; Livingston, 1976). Such chemicals are noted for environmental persistence, a capacity for bioaccumulation and biomagnification, and species-specific patterns of acute toxicity. While earlier work stressed the ubiquitous nature of organochlorine residues in aquatic biota (Butler, 1969), more recent work (Butler, 1973; Johnston, 1974) noted declines in DDT residues during the early 1970's which were attributed to the total ban of DDT use in the U.S. by the end of 1972. This was accomplished by serious restriction of PCB use during the same period (Nesbit and Sarofim, 1972).

In addition to marked variations of pesticide occurrence from one estuarine system to the next (Butler, 1973), seasonal variation in residue peaks in estuaries can be considered due to temporal patterns of pesticide application (Bradshaw et al., 1972; Butler, 1973), rainfall (Richard et al.,
*Portions of this section of the report are included in a paper currently in review for publication in Marine Biology. The authorship of this paper is as follows: R.J. Livingston, N.P. Thompson, and D.A. Meeter.
1975), stream discharge (Bradshaw et a]., 1972), and degradation functions (Brodtmann, 1976). This would indicate that the type and level of pesticide residues in a given estuary depend on various factors such as agricultural activity, regional rainfall and drainage characteristics, soil composition, movement of particulates, and metabolic activity. Although long-term fluctuations of estuarine biota have been described in various coastal systems (Dahlberg and Odum, 1970; McErlean et al., 1973; Oviatt and Nixon, 1973; Haedrich and Haedrich, 1974; Livingston, 1975, 1976; Livingston et $21 ., 1975$) and the importance of the steady (oscillatory) state to impact analysis has been considered (Duke and Dumas, 1974; Livingston et a1., 1976), there are suprisingly few data concerning the actual effects of organochlorine compounds at the systems level. Field analyses of the acute impact of dieldrin (Harrington and Bidingmayer, 1958) and ODT (Croker and Wilson, 1970) on salt marsh assemblages are available. Reimold (1974) and Reimold et al., (1974) described temporal changes in estuarine assemblages as a function of reduced toxaphene contamination in a Georgia (U.S.A.) system. However, the direct reaction of an estuarine system to organochlorine stress remains largely undocumented.

There is a growing data base regarding biotic interactions in the Apalachicola Estuary (Livingston, 1974, 1976b; Livingston et al., 1974a, 1976, 1977). In addition, various short-term pesticide analyses indicated moderately high levels of organochlorine contamination in this system prior to 1973 (Breidenbach et al., 1967; Henderson et al., 1971; Giam et al., 1972; Butler, 1973). This portion of the report will describe recent changes in the organochlorine burden in the Apalachicola Drainage System, and will present data concerning long-term trends of the epibenthic assemblages in the Apalachicola estuary.

Materials and Methods

Field Procedures

Surface and bottom water samples were taken monthly at fixed stations in the Apalachicola Estuary (Fig. 1) with a liter Kemmerer bottle. Dissolved oxygen and temperature were measured with a Y.S.I. dissolved oxygen meter. Salinity was taken with a temperature-compensated refractometer calibrated periodically with standard sea water. River flow data taken at Blountstown, Florida were provided by the U.S. Army Corps of Engineers (Mobile, Alabama) while local rainfall data were taken by the National Oceanic and Atmospheric Administration (Environmental Data Service, Apalachicola, Florida). Turbidity (Jackson Turbidity units) was determined using a Hach Model 2100-A turbidimeter, and water color was measured by a platinum-cobalt standard test. Light penetration was estimated with a standard Sechi disk. Data concerning chlorophyll A, orthophosphate (inorganic, solubie, reactive), nitrite, nitrate, and silicate were provided by Dr. Richard Iverson (Department of Oceanography, Florida State University); these parameters were measured according to standard procedures (Livingston et al., 1974).

Biological sampling was carried out in the bay at fixed stations (Fig. 1) with $5-\mathrm{m}$ (16 foot) otter trawls (1.9 cm mesh wing and body; 0.6 cm mesh liner) towed at speeds of $2.0-2.5$ knots. The determination of station placement and sampling procedures has been described by Livingston (1974, 1975, 1976). Station placement was determined by visual (diving) examination. Much of the study area consisted of shallow mud flat habitats with Station 6 characterized by seasonally heavy concentrations of benthic macrophytes dominated by Ruppia maritina. Day and night samples were taken at monthly intervals from March, 1972 to May, 1974. Only day samples were taken there-
after, Complete data were not taken during 3 summer months of 1974. All collections were preserved in 10% formalin and identified to species. Analysis was carried out on composite samples including Stations 1, 5, and 6 , and 2 (2-minute) tows taken at Stations 1A, 1B, 1C, 2, 3, 4, and 5A. Varying combinations of stations and time periods were used for calculations which generally were performed on composite data at monthly intervals.

Pesticide Residue Analysis

Animal samples from Lake Seminole (Fig. 1) were taken for pesticide determinations by the use of bag seines and hook-and-line fishing. Multiple samples were taken with otter trawls from the various stations in the Apalachicola Bay System. All samples were immediately wrapped in aluminum foil and frozen with dry ice in the field; such samples were kept frozen until analysis. Clam (Rangia cuneata), shrimp, and (small) fish samples were usually pooled composites of 3-6 individual organisms. Sediment samples were taken at various stations with a small coring device (7.2 cm d); the top 10 cm were placed in aluminum foil and frozen for analysis.

Samples were prepared as described by Thompson et al. (1974). Animal samples were dissected, weighed, and ground in sodium sulfate. Samples of very small fish included the entire fish; larger fish samples consisted of the dorsal muscle. Clam samples included the entire body except the shell. Crab samples consisted of the muscle base of the last pair of walking legs and the hepatopancreas. Total sample size was usually less than or equal to 25 grams. Sediment samples were dried under a hood for two days and 50 gram portions were analyzed.

The samples were extracted for six hours with 200 ml of petroleum ether in a Soxhlet apparatus. If the weight of the sample was greater
than 10 grams, the extract was then divided into the two equal portions; one to analyze for various organochlorine compounds, the second to check for Mirex. The extract was poured into a 250 ml beaker and evaporated to dryness under a hood. After evaporation, the beakers were weighed and 50 mls of hexane saturated with acetonitrile were added to the sample residue. This was transferred to a 250 ml separatory funnel and 50 mls of acetonitrile saturated with hexane was added. After shaking, the acetonitrile layer was drained, and the hexane layer was washed 3 times with 50 ml acetonitrile. The hexane portion was discarded and the combined acetonitrile washings were evaporated to dryness under a hood. The residue beaker was reweighed; the difference was recorded as lipid weight. Sediment samples were placed on Florisil directly after extraction eliminating the acetonttrile partitioning.

Further residue cleanup was accomplsihed by quantitatively transferring the sample with 30 ml of hexane to a column ($22 \times 180 \mathrm{~mm}$) of 7% water deactivated Florisil and eluting the columns with 200 ml of hexane: benzene (3:1) solution. The eluate was then concentrated to 0.5 ml and analyzed by electron capture gas chromatography. A Varian 2400 gas chronatograph with $6^{\prime} \times 1 / 4^{\prime \prime} \quad$ glass column of 1.5%) $v-17+101$ was used for confirmation. Operations parameters for the gas chromatograph were: injections port temperature $210^{\circ} \mathrm{C}$; column temperature $198^{\circ} \mathrm{C}$; detector temperature $250^{\circ} \mathrm{C}$; and a N_{2} carrier gas flow rate of $60 \mathrm{ml} / \mathrm{min}$. While the presence of polychlorinated biphenyls interferred with the quantification of pesticides, a further separation was made on a silica gel column. The sample was placed on a column (10 $\times 70 \mathrm{~mm}$) of Grace-Davidson grade 950 silica ge? ($60-200 \mathrm{mesh}$) and eluted with 70 mls of pentane and 50 mls of benzene. These eluates were collected separately, concentrated and injected as above, with the eluates
being analyzed separately, the pentane portion for chlorinated hydrocarbons. Silica gel separations were not attempted on samples where the maximum possible DDD concentrations was less than 0.005 ppm .

After the sample was extracted and divided, the Mirex portion was evaporated to dryness and eluted with 50 ml of hexane on a column of activated Florisil ($12 \times 100 \mathrm{~mm}$). The eluate was concentrated to 0.5 ml and injected on the gas chromatograph.

Statistical Methods

In all computations, numbers of individuals (N), dry weight biomass (B), and number of species (S) were used. Various indices were determined from the invertebrate and fish data. These included the Margalef Index (MA) (Margalef, 1958), the Simpson Index (SI) (Simpson, 1949), and the Shannon Index (H^{\prime}) (Shannon and Weaver, 1963; Pielou, $1966 \mathrm{a}, \mathrm{b}, 1967,1969$). Relative dominance (D_{1}) was determined by dividing the number of individuals of the single most dominant species by the total number of individuals (McNaughton, 1968; Berger and Parker, 1970). The rationale for the use of these indices has been developed elsewhere (Livingston, 1975, 1976) and will not be detailed here. The measure of affinity (Matusita, 1955; van Belle and Ahmad, 1973) was used for the cluster analysis with a locally modified version of a program furnished by Dr. D.F. Boesch. All other statistical calculations were run with programs taken from the Statistical Package for the Social Sciences (S.P.S.S., 1975) and Biomedical Computer Program (B.M.D., 1973).

Results

Physico-chemical Functions

The physico-chemical data appear in full in another portion of this report. A brief surmary of these parameters is presented here. Data indicate
that the Apalachicola Bay System is a shallow barrier island estuary dominated physically by the Apalachicola River which has a highly variable discharge (Fig. 2). During the first four years of the study period, river flow usually peaked from January to April at which time the range of extreme diurnal flows was usually maximal. The range and mean flow reached low levels during late summer and fall. This pattern was usually out of phase with local rainfall which often peaked during the summer and early fall. There was considerable annual variation of river flow with relatively low levels during the first and third years of sampling. During the winter and spring of 1973, there was especially pronounced river flow and flooding throughout the Apalachicola Valley.

Water temperature (Fig. 2) followed seasonal patterns with no substantial variation from year to year. At any given time, there was usually little vertical or horizontal variation in water temperature throughout the bay system (Livingston et al., 1977). River flow generally influenced other envirommental parameters. Increased flow caused increased water color, turbidity, detritus, and nutrients. Generally, this is a highly turbid bay with considerable oyster bar development and relatively little benthic macrophyte productivity except in shallow (fringing) areas. Tides in the Apalachicola Estuary are semi-diurnal (mixed, unsymmetrical) with a small tidal range (up to 1 m). Winds in the area follow no clear directional trend although during fall and winter there is a northerly flow which becomes southerly during the rest of the year (Dawson, 1955).

Statistical analysis of the physico-chemical data taken over the 4-year study period included simple linear regression and correlation for distribution with time. Significant changes in the regressions (original and $\log _{e}$ units)
were found for salinity ($B=-0.26, p<0.02$), rainfall ($B=+0.09, p<0.01$), nitrate ($B=-2.1 p<0.004$), and turbidity ($B=-0.63, p<0.04$). The results of a 2-way (month x year) analysis ${ }^{*}$ of variance of these data are shown in Table l. Since in a 2 -way analysis with one observation per cell, the mean square is of necessity used as an error term, the occurrence of annually high significance levels probably indicates that considerable interaction exists. There was significant ($p<.05$) annual variation of river flow although no trend was apparent during the study period. There were reductions in salinity, turbidity, and nitrate in the Apalachicola system with time. The results of a factor analysis (Table 2) indicate that high river flow is usually associated with increased color and turbidity and reduced Secchi readings, and low levels of salinity, temperature, and chlorophyll A. This is consistent with the known seasonal pattern of these factors, and indicates the important influence of the Apalachicola River on the physical environment of the Apalachicola Estuary. While the river dominates the seasonal fluctuations of parameters such as salinity, long-term changes in the overall salinity of the bay appear to be related to other functions such as local rainfall and runoff. This would indicate that causation reflects multiple interactions thus allowing apparently contradictory results in the shortversus long-term trends (e.g., turbidity and salinity relationships).

Pesticide Analysis

Organochlorine residues in sediments taken from the Apalachicola Drainage Area are presented in Table 3. Generally low values were found for DDT-R and Arochlor 1254 while other pesticides were not detected. Due to these results, sediment analysis was discontinued after October, 1973. There were moderate levels of organochiorine compounds (DDT-R and PCB's) in organisms taken
above and below the impoundment behind the Woodruff Dam (Table 4); these levels were not dependent on station placement (above or below the dam) or the passage of time from 1972 to 1974.

Mean organochlorine resides in various species taken in the Apalachicola Estuary from March 1972 to November, 1974 are shown in Table 5. Graphical representations of monthly maxima of organochlorine residues for selected species are shown in Figs. 3 and 4. The results of an analysis of variance of the station-specific distribution of organochlorine residues in the Bay showed no significant spatial relationship in the occurrence of such compounds in estuarine organisms. Therefore, station locations were not given in the final data presentation. The temporal patterns of DDT occurrence were correlated with PCB distributions, with generally increased residues during winter and early spring months. Such increases coincided with river flooding. During the sampling period, there was a marked reduction of organochlorine residues for all species, with relatively low levels found subsequent to the first year of analysis. This overall decrease appeared to be timed in a general way with the reduced use of the organochlorine compounds although river flow patterns appeared to be related to both seasonal and annual variations of the residues. The two-way Anova results (Table 1) confirm a significant decrease in DDT-R and PCB residues in R. cuneata after the first year of sampling.

A comparison of changes of relative percentages of the DDT metabolites with time in Rangia cuneata and the sciaenid fishes is shown in Figs. 4 A and 4B. During the study period, there was a general decline in the relative level of DDT and DDD while the DDE percentages increased. This indicates that relatively little new DDT entered the bay system during the period of
study. This is consistent with the marked decline of organochlorine residues after the first year of monitoring. The long-term trends of organochlorine residues in the Apalachicola Estuary thus reflect reduced upland usage and flushing patterns which may have been related to the major river flooding during the winter and spring of 1973.

Biological Parameters

Analysis of the composite collections is shown in Figs. 5 and 6 . There was a general increase in the invertebrate Shannon index with time. There were also increased numbers of invertebrates (N) during the final 18 months of sampling and slight increases with time in the number of species and the Margalef index. After the first 6 months, there was a gradual decrease in the relative dominance with time. Although these trends appear to be real, there was no statistically significant variation from year to year (Table 1); this was possibly due to the aforementioned use of the year-month interaction as an error term.

The fishes (Fig. 6) showed a similar though more pronounced pattern of changes during the study. During the first year of sampling, all indices were relatively low while relative dominance was hịh. After a further decrease which coincided with the increased river flooding during the winter and spring of 1973, there was an increase in the number of species, Margalef Index, and Shannon diversity. The relative dominance was inversely related to the diversity index. The six-month mean values for all indices tended to stabilize by the winter of 1974. Further analysis of these data (Table 1) indicated that increased $N-N_{1}$ and Shannon diversity and decreased relative dominance with time were statistically significant on an annal basis. Except for Shannon diversity, monthly variations were not significantly
different. In general, most of the indices representing the first year of sampling (1972-73) were divergent from subsequent results. Such differences coincided in time with the precipitous decrease in organochlorine residues and relatively high levels of dissolved nutrients and chlorophyll A.

Species Composition

Changes in the species compositon of fishes taken at night at Stations 1 and 4 in the Apalachicola Estuary are shown in Fig. 7. During the first year of sampling, Anchoa mitchilli was a major dominant, and accounted for a considerable proportion of the total numbers of fish taken. By the second year of sampling, this dominance was largely reduced to the months of October and November. A succession of dominant species became apparent, Anchoa in the late fall, Micropogon in the winter and spring, and Cynoscion in the summer. With the exception of June, JuTy, and August, the number of species taken per month was generally higher during the second year of sampling. These data explain the distribution of relative dominance and diversity. During the first year, there was a general trend toward increased dominance (and consequently, reduced diversity) when compared to the second year. There was an increase in numbers of individuals in species other than the dominant during the second year of sampling. The nocturnal distribution of trawl-susceptible fishes in the Apalachicola Estuary thus follows a clear pattern of time-dependent changes in relative abundance and temporal species succession which are consistent with previous analysis at the community level.

These results are further explained by long-term population variations of the numerically dominant fish species (Fig. 8). During 9 of the first 12 months of sampling (1972-73), Anchoa mitchilli was the dominant species,
while maximal river flooding (winter and spring, 1973) coincided with the preeminence of Micropogon undulatus. Starting in the summer of 1973, a consistent pattern emerged whereby there was a regular (temporal) succession of dominants. During the fall months, Anchoa was the top species with lesser peaks occurring during the spring and summer. In winter and early spring months, Micropogon undulatus and Leiostomus xanthurus were dominant followed by Cynoscion arenarius in the summer and early fall. Other species such as Harengula pensacolae and Brevoortia patronus were dominant during the spring of each year. Although there were usally minor variations in this sequence from year to year, the general pattern prevailed subsequent to the spring and summer of 1973. The total number of species taken the first year was less than the following 3 years. Although more fish were taken during the first year, when the top dominants were removed from analysis, there was a substantial increase in the numbers of fishes taken during the succeeding 3 years of sampling. These data are consistent with the night collections, and provide a qualitiative basis for the observed patterns of temporal fluctuations of the community indices.

A cluster analysisiwas used to determine the species groups which tended to co-occur in time during the sampling period. The 48 monthly totals of absolute abundance of each fish species were used to cluster species which tended to co-occur during the 4 years of sampling. The similarity coefficient

$$
p\left(F_{1}, F_{2}\right)=f_{1}(x) f_{2}(x)^{\frac{1}{2}} \text { du }(x) ;
$$

(Matusita, 1955; van Belle ad Ammed, 1973) was used in conjunction with the flexible grouping cluster strategy $(\beta=-0.25)$. The use of this procedure has been described elsewhere (Sneath and Soka], 1973; Boesch, 1973). The
results of this analysis (using the top 45 species taken during the survey) are shown in Fig. 9. As might be expected, the key clusters were centered around particular dominant species. Based on relative abundance, five such groups were chosen for further anaiysis. Associations were determined somewhat arbitrarily on the closeness of fit. By using clusters of species instead of individual populations in our statistical analysis, the annual variability of population abundance tended to be smoothed from one year to the next. Of these groups, none showed a statistically significant change in a linear regression with time. However, there were significant variations based on annual fluctuations as shown in Table 1. The Anchoa group was particularly abundant during the first year of sampling and was largely absent during the second year whereas the Micropogon group prevailed to a considerable degree during the second year of sampling. There was a steady increase in the predominance of the Gobiosoma group; this was especially pronounced during the fourth year of sampling. In general, the relative dominance of the major clusters of fishes in the Apalachicola Estuary appeared to be consistent with a change in conditions subsequent to the second year of study.

The results of stepwise regressions run with various combinations of variables (1isted in Table 1) are given in Table 6 . Due to the fact that nutrients, chTorophyll A, and organochlorine residues were not sampled for the entire 48 -month study period, three difference sets of regression data are presented. The DDP (dummy) variable was set up to provide a contrast between the first year of relatively high levels of organochlorine residues $(+1)$ and the subsequent two years of low residue (0). Dummy variables for months of the year were provided to determine temporal relationships. Overall,
with minor discrepancies, the results of the three data sets were consistent. Numbers of species and individuals generally peaked during October or November. The relative dominance and Shannon diversity were inversely related to the DDP variable with increases in both functions occurring during late summer and fall periods. In addition, the Simpson Index (Livingston, 1976) was computed with similar results. The Margalef Richness Index was associated with tidal characteristics, and was high during periods of low river flow. The results with the various fish clusters were largely consistent with the previous analysis. The Anchoa group , dominant during fall periods, was associated with DDT residues in the bay. Three of the four remaining clusters showed strong associations with river flow thus confirming the importance of this parameter to the estuarine fishes. The use of stepwise regression is not without problems. The relatively large number of variables increases the potential for obtaining significance, thereby tending to affirm postulated associations. Such analysis should thus be viewed within the context of the study as a whole.

Long-term Fluctuations of Individual Populations
The total numbers and biomass (dry weight) of epibenthic invertebrates taken at stations in the Apalachicola Estuary are given in Figs. 10 and 11 and Tables 8 and 9. Although there were some differences in peak values between numbers and biomass figures, peak placement was similar in both. There was a general pattern $\boldsymbol{n}^{i n c r e a s e d ~ n u m b e r s ~ a n d ~ b i o m a s s ~ o f ~ i n v e r t e b r a t e s ~}$ during spring (February - May) and fall (Septemter - November) periods. In terms of numbers, there was no long-term trend although the lowest cumulative figures occurred during the third and fourth years of sampling (3/74-2/76). Spring peaks were generally due to Palaemonetes pugio and Callinectes sapidus

While fall periods were characterized by penaeid shrimp (largely Penaeus setiferus) and Callinectes sapidus. In terms of biomass, blue crabs and white shrimp were by far the most significant species in the bay. There was a longterm downward trend in the invertebrate biomass figures due to the relatively high biomass figures during the first two years of sampling. The third year of sampling (3/74-2/75) was a low point in total biomass of invertebrates in the Bay. This was followed by increases in the 2 succeeding years. This was due to relative declines in most of the species normally caught in the area.

Monthly variations of numbers (A) and biomass (B) of the top 9 species of epibenthic invertebrates are given in Figs. 12 -19. The reductions during 1974 and 1975 are reflected in the figures of penaeid shirmp and blue crabs (Figs. 12 and 13). Varied patterns are evident, however which indicate reduced numbers during the river flooding of 1973 (Figs. 14, 15, 17, 15).

The total numbers and biomass (dry weight) of fishes taken at stations in the Apalachicola Estuary are shown in Figs. 20 and 21 and tabTes 10 and 11. Although the general trends were similar regarding numbers of indiv= iduals and biomass, there were some differences which in some instances related to species such as Dasyatis sabina and Lepisosteus osseus which tended to dominate biomass figures while being relatively insignificant in terms of numbers of individuals. Numbers tended to peak in spring and fall although this pattern showed some variation (as with biomass) where there would be a continuous series of peaks in spring, fall, and winter. This reflected patterns of individual populations which have been described above and are shown in Figs.22-31. Total number of fishes reached a low point in the third year of sampling (3/74-2/75) and, due to large numbers of Brevoortia patronus, Leiostomus xanthurus, Anchoa mitchilli, and Micropogon
undulatus, almost twice as many fishes were taken during the fifth year of sampling (3/76-2/77) than any of the previous years. As noted previously dominants (numbers) in this bay include Anchoa mitchilli, Micropogon undulatus, and Cynoscion arenarius.

These data are currently under review to determine the relationships of the individual population distributions with the various other parameters (physico-chemical, biological) which are available in this report.

Discussion

Various episodic sources of stress, natural and anthropogenic, occurred during the study. In June, 1972, Hurricane Agnes came ashore near the Apalachicola region with winds gusting to 55 knots and tides around 2 m above the norm. Routine dampling of the bay immediately after the storm revealed little overt change in the physico-chemical and biological functions of the Apalachicola Estuary although several fish species were taken which were not found in the bay before the hurricane. While such storms can cause mass mortalities of coastal organisms (Brongeersma-Sanders, 1957; Robins, 1957; Tabb and Jones, 1962), none was observed here. A1so, the extreme flooding of the Apalachicola River in 1973 had an immediate effect on the bay fauna. This was particularly pronounced with respect to epibenthic invertebrate distributions.

Such natural phenomena can influence long-term biotic trends in such areas. In addition, periodic maintenance dredging and spoil disposal in the vicinity of Stations 1 and 2 and clearcutting and draining activities in the Tate's Hell Swamp (above Stations 5 and 5A) could have been responsible for habitat changes which caused local trends in the biotic indices. The relative significance of clearcutting will be presented as a separate report.

Although the residue analysis in this study is consistent with known trends of organochlorine contamination in other areas with respect to seasonal
fluctuations (Smith and Cole, 1970; Bradshaw et al., 1972; Butler, 1973; Brodtmann, 1976) and long-term variation (Butler, 1973; Johnston, 1974; White, 1976), the relatively steep decline of such residues in the Apalachicola Estuary during 1973 could have been associated with the extreme river flooding during this period. Decreased upland use undoubtedly contributed to this phenomenon; this is corroborated by increased DDE:DDT ratios subsequent to the first year of sampling (Table 7); this could result from contined DDT without replenishment (MacGregor, 1974). The relatively low levels of organochlorine compounds found in sediments throughout the Apalachicola System could be associated with solubilization of such compounds by humates (Wershaw et a., 1969) and/or transport out of the immediate drainage system via suspended particulate matter. Peakall and Lincer (1970) showed that DDT and PCB compounds often undergo similar routes of dispersion with transport through riverine systems. This has been described as a function of solution and readsorption to particulate matter (Nisbet and Sarofin, 1972). Such accumulation of organochlorines by suspended matter (Wilson, 1976) together with detrital ingestion by certain estuarine organisms could account for the observed distribution of such compounds in the Apalachicola Estuary. Seasonal migratory movement of the juvenile populations out of the bay could contribute to the net transport of organochlorine compounds out of the system. The relatively rapid decline of such compounds in this instance is thus viewed as a function of the peculiar ecological characteristics of this river-dominated estuarine system.

Various statistical applications were used in this study to test environmental relationships in the Apalachicola Estuary beyond those aiready es-. tablished by Livingston (1974, 1976) and Livingston et al., (1976, 1977).

The 2-way ANOVA tested the main effects of month and year using year-month interaction as an error term. This resulted in a conservative test so that significant main effect differences were not revealed when substantial interaction was present. To check this, the postulated measures were calculated separately for Stations 1,5 , and 6 thus allowing a $4 \times 12 \times 3$ analysis of variance using the three-way interaction as an error term. Using year, month, and station as factors with three-way interaction, significant differences among years and months existed for aimost all measurements at the 3 stations indicating that significant annual (main) effects calculated from the entire data base for various parameters were due to small year-by-month interactions. This interpretation is complicated by the fact that trends in parameters taken at Stations 1 and 5 differed from the composite results. Overall, significant levels of variation for annual changes were found for such factors as relative dominance and species diversity of the pooled fish data.

The use of dummy variables for representation of months (M_{1} to M_{12}) and years (DDP, year 2, year 3, year 4) in the stepwise multiple regression analysis (Table 6) allowed certain generalizations concerning the identification of significant variables. This was possible despite the relatively large number of candidate predictors. The fact that the late summer-fall period is characterized by high productivity, considerable biological activity, and peaks in various community parameters is consistent with past studies (Livingston, 1976; Livingston et al., 1976). The first year of data, characterized as the DDP variable, showed fundamental differences in terms of fish diversity, species richness, and relative dominance. The dominance of the Anchoa group at this time coincided with these observations just
as river flow was closely associated with the temporal patterns of occurrence of three other fish groups of clusters. The use of time-related species associations in the multivariate analysis tended to dampen otherwise erratic annual variations in the numbers of individual species. Overall, the relatively consistent temporal distribution of fishes in the Apalachicola Estuary allowed the identification of river flow and a year 1 phenomenon (possibly the presence of organochlorine compounds) as primary determinants of community structure. This leads to the possibility that there are predictable temporal successions of dominant species in "undistrubed" estuaries which can be summarized as annual patterns or "fingerprints" of species associations despite broad seasonal variations in key physical forcing functions. Such patterns could serve as models to test the relative influence of discrete shocks to the system in the form of natural events or human activities.

LITERATURE CITED

Bechtel, T. J. and B. J. Copeland: Fish species diversity indices as indicator of pollution in Galveston Bay, Texas. Contrib. Mar. Sci.. Texas 15 ,
$103-132$ (1970).

Berger, W. H. and F. L. Parker: Diversity of planktonic formaminifera in deepsea sediments. Science. 168, 1345-1347 (1970).

Bittaker, H. F.: A comparative study of the phytoplankton and benthic macrophyte productivity in a polluted versus an unpolluted coastal area. M. S. Thesis. Florida State University, Tallahassee (1975).

Boesch, D. F.: Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Mar. Biol. 21, 226-244 (1973).

Bradshaw, J. S., E. L. Loveridge, K. P. Rippee, J. L. Peterson, D. A. White, J. R. Barton and D. K. Fuhriman: Seasonal variations in residues of chlorinated hydocarbon pesticides in the water of the Utah Lake drainage system- 1970 and 1971. Pest. Mon. Jour. 6(3), 166-170 (1972).
Breldenbach, A. W., C. G. Gunnerson, K. F. Kawahara, J. J. Lichtenberg, and R. S. Green: Chlorinated hydrocarbon pesticides in major river basins, 1957-65. Publ. Health Rept. 82(2), 139-156.

Brodtmann, N. V., Jr.: Continuous analysis of chlorinated hydrocaroon pesticides in the lower Mississippi River. Bul. Env. Cont. Toxicol. 15(1). 33-39 (1976).

Brongeersma-Sanders, M.: Mass mortality in the sea. Mem Ceot. Soc. America Mem. 67(1), 941-1010 (1957).

Butler, P. A.: Monitoring pesticide pollution. Bioscience. 19(10), 889-896.

- Organochlorine residues in estuarine mollusks, 1965-72 National Pesticide Monitoring Program. Pest. Mon. Jour. 6(4), 238-363 (1963).

Copeland, B. J. and T. J. Bechtel: Species diversity and water quality in Galveston Bay, Texas. Hat. Air Soil Pol. 1, 89-105 (1971).

Croker, R. A. and A. J. Wilson: Kinetics and effects of DDT in a tidal marsh ditch. Trans. Amer. Fish. Soc. 94, 152-159 (1970).

DahTberg, M. P. and E. P. Odum: Annual cycles of species occurrence, abundance, and diversity in Georgia estuarine populations. Amer. Mid. Nat. 83, 382392 (1970).

Dawson, C. E.: A contribution to the hydrography of Apalachicola Bay, Florida. Publ. Texas. Tnst. Mar. Sci. 4, 15-35 (1955).

Duke, T. W. and D. P. Dumas: Implications of pesticide residues in the coastal enviroment. In: Pollution and Physiology of Marine Organisms. Ed. F. J. Vernberg and W. B. Vernberg. pp. 137-164 (1974).

Fisher, N. S.: Chlorinated hydrocarbon pollutants and photosynthesis of marine phytoplankton: a reassessment. Science 189, 463-404 (1975).

Giam, C. S., A. R. Hanks, R. L. Richardson, W. M. Sackett and M. K. Wong: DDT, DDE, and polychlorinated biphenyls in biota from the Gulf of Mexico and Caribbean Sea-- 1971. Pest. Mon. Jour. 6(3), 139-143 (1972).

Haedrich R. L. and S. O. Haedrich: A seasonal survey of the fishes in the Mysttc River, a polluted estuary in downtown Boston, Massachusetts. Est. Coastal Mar. Sci. 2, 59-73 (1974).

Harrington, R. W. and W. L. Bidlingmayer: Effects of dieldrin on fishes and invertebrates of a salt marsh. Jour. Wildi. Mgmt. 22, 76-72 (1958).

Henderson, C., A. Inglis, and W. L. Johnson: Organochlorine insectictde residues in fish-- Fall 1969 National Pesticide Monitoring Program . Pest. Mon. Jour. 5(1), 1-11 (1971).

Johnson, D. W.: Pesticides and fishes-- a review of selected Ifterature. Trams. Amer. Fish. Soc. 97, 398-424 (1968).

Johnston, D. W.: Decline of DDT residues in migratory songbirds. Science. 186 , (4166) (1974).

Livingston R. J.: Field and laboratory studies concerning the effects of vamious pollutants on estuarine and coastal organtsms with application to the management of the Apalachicola Bay System (North Florida, U. S. A. Final Report, State University Systems of Florida. Sea Grant SUSFSG-04-3-158-43) (unpublished, 1974).

- Impact of kraft pulp-mill effluents on estuarine and coastal fishes in Apalachee Bay, Florida, U. S. A. Mar. Biol. 32, 19-48 (1975).

Diurnal and seasonal fluctuarions of estuarine organisns in a North Florida estuary. Est. Coastal Mar. Sci. 4, 323-400 (1976a)

- Dynamics of organochTorine pesticides in estuarine systems: Effects on estuarine biota. Proc. Third International Est. Conf. (in press, 1976b).
-, R. L. Iverson, R. H. Estabrook, V. E. Keys and J. Taylor, Jr.: Major features of the Apalachicola Bay system: physiology, biota, and resource management. Florida Sci. 37(4), 245-271 (1974a).
-, G. J. Kobylinski, F. G. Lewis, III and P. F. Sheridan: Long-term fluctuations of epibenthic fish and invertebrate populations in Apalachicola Bay, Florida. Fish Bull. 74, 311-321 (1976).
-, P. F. Sheridan, B. G. Mclane, F. G. Lewis, III and G. G. Kobylinski: The biota of the Apalachicola Bay System: functional relationships. In: Proceedings of the Conference on the Apalachicola Drainage System. Eds. R. J. Livingston and E. A. Joyce, Jr. (in press, 1977).

McErlean, A. J., S. G. O'Conner, J. A. Mihursky and C. I. Gibson: Abundance, diversity, and seasonal patterns of estuarine fish populations. Est. Coastal Mar. Res. 1, 19-36 (1973).

MacGregor, 3. S.: Changes in the amount and proportions of DDT and its metabolites, $D D E$ and $D D D$, in the marine environment off shouthern California, 1949-72. Fish. Bul7. 72, 275-293 (1974).

McNaughton, S. J.: Structure and function in California grasslands. Ecology 49, 962-972 (1968).

Margalef, D. R.: Information theory in ecology. Gen Syst. 3, 36-71 (1958).
Matusita, K.: Decision rules based on the distance, for problems of fit, two samples and estimation. Ann. Math. Statist. 26, 631-640 (1955).

Mosser, J. L., N. S. Fisher, and C. F. Wurster: Polychlorinated biphenyls and DOT alter species composition in Mixed cultures of algae. Science 176, 533-535 (1972).
-, T. C. Teng, W. G. Walther and C. F. Wurster: Interaction of PCB5, DDT, and DDE in a marine diatom. Env. Cont. Tox. 12, 665-668 (1974).

Nisbet, I. C. T. and A. F. Sarofim: Rates and routes of transport of PCBs in the enviroment. Environ. Health. Persp. 1, 21-38 (1972).

Oviatt, C. A. and S. W. Nixon: The demersal fish of Narragansett Bay: an analysis of commuity structure, distribution, and abundance. Est. Coastal Mar. Sci. 1, 361-378 (1973).

Peakall; D. B. and J. L. Lincer: Polychlorinated biphenyls-- another long-life widespread chemical in the environment. Bioscience 20(17) (1970).

Pielou, E. C.: Shannon's fomula as a measure of specific diversity: its use and misuse. Letters to the Editors, The American Naturalist 100(974) (1966a).

- The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131-144 (1966b).
- The use of information theory in the study of the diversity of biological populations. Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability 4, 163-177 (1967).
- An introduction to ma thematical ecology. Wiley-Interscience, New York (1969).

Reimold, R. J.: Toxaphene interactions in estuarine ecosystems. Georgia Sea Grant Rept. 746, 80 (1974).
-, R. C. Adams and C. J. Durant: Effects of toxaphene contamination on estuarine ecology. Univer. Ga. Mar. Inst. Tech. Rept. Swa 73-8, 100, (1973).
Richard, J. R., G. A. Junk, M. J. Avery, N. L. Nehring, J. S. Fritz and H. J. Svec: Analys is of various Iowa waters for selected pesticides: atazine, DDE, dieldrin-1974. Pest. Mon. Jour. 9(3), 117-123 (1975).

Robins, C. R.: Effects of storms on the shallow-water fish fauna of southern Florida with new records of fishes from Florida. Bull. Mar. Sci., Gulf Carib. 7(3), 266-275 (1957).

Shannon, C. E. and W. Weaver: The Mathematical Theory of Communication. Univ. of $111 i n o t s$ Press, Urbana (1963).

Simpson, E. H.: Measurement of diversity. Nature 163, 688 (1949).
Smith, R. M. and C. E. Cole: Chiorinated hydrocarbon insecticide residues in winter flounder, Pseudopleuronectes americanus. J. Fish. Res. Bd. Canada 27, 2374-2380 (1972).

Sneath, P. H. A. and R. R. Sokal: Numerical Taxonomy. W. H. Freeman and Company, San Francisco (1973).

Tabb, D. C. and A. C. Jones: Effect of Hurrican Donna on the aquatic fauna of north Florida Bay. Trans. Amer. Fish. Soc. 91, 375-378 (1962).
Thompson, N. P., P. W. Rankin and D. W. Johnston: Polychlorinated biphenyls and p. ploDE from Ascension Island, South Atlantic Ocean. Bulf. Env. Cont. Toxicol. 11(5), 399-406 (1974).
van Belle, B. and I. Ahmad: Measuring affinity of distributions. In: Reliability and biometry: statistical analysis of lifelength. Eds. F. Proschan and R. J. Serfiling (1973).

Walsh, G. E.: Insecticides, herbicides, and polychlorinted biphenyls in estuarines. J. Wash. Acad. Sci. 62, 122-139 (1972).

Wershaw, R. L. P. J. Burcar and M. C. Goldberg: Interaction of pesticides with natural organic material. Env. Sci. Tech. 3, 271-273 (1969).

White, D. H.: Nationwide residues of organochlorines in starlings, 1974. Pest. Mon. Jour. 10(1), 10-17 (1976).

Wilson, A. J.: Effects of suspended materia] on measurement of DDT in estuarine water. Bull. Env. Cont. Toxicol. 15(5), 515-521 (1976).

Limmerman, M. S. and R. J. Livingston: The effects of kraft mill effluents on benthic macrophyte assemblages in a shallow bay system (Apalachee Bay, North Florida, U. S. A.) Mar. Biot. 34, 297-312 (1976).

Fig. 1: Chart showing the primary study areas in the Apalachicola Drainage System. This includes distribution of permanent stations in the impoundment above the Jip Woodruff Dam (Lake Seminole) and the Apalachicola Estuary ($42^{\circ} 40^{\prime} \mathrm{N} ; 85^{\circ} 00^{\prime} \mathrm{W}$).

Fig. 2: Changes, by month, of Apalachicola River flow (cubic feet per second) and two major physical functions (temperature, in ocentigrade; salinity in parts per thousand) monitored at station 1 (bottom) in the Apalachicola Estuary from March, 1972 to February, 1976. The monthly means and ranges of river flow at Blountstown (Florida), as measured by the U.S. Army Corps of Engineers (Mobile, Alabama), are represented.

Fig. 3: Residues of DDT-R and Arochlor 1254 found in organisms taken in the Apalachicola Estuary from March, 1972 to November, 1974.

Fig 4: Residues of DDT and its major metabolites found in the bivalve Rangia cuneata (A) and sciaenid fishes (B) in the Apalachicola Estuary and expressed as percentages of the total (DDT-R) monthly from March, 1972 to November, 1974. Residues of DDT-R and Arachlor 1254 found in sciaenid fishes (C) and Micropogon undulatus (D) in the Apalachicola Estuary from March, 1972 to June, 1974 .

Fig 5: Changes in Margalef Richness (Mar), sumber of species (S), Shannon diversity (H^{\prime}), and the number of individuals of invertebrates taken monthly from the combined stations (35 trawl tows) in the Apalachicola Estuary from March, 1972 to February, 1976. Dashed itines represent 6 -month mean values of these indices and relative dominance of the top species.

Fig. 6: Changes in Margalef Richness (Mar), number of species (S), Shannon diversity (H^{\prime}), and the number of individuals of fishes taken monthly from the combined 5 tations (35 trawl tows) in the Apalachicola Estuary from March, 1972 to February, 1976. Dashed lines represent $6-$ month mean values of these indices and relative dominance of the top species.

299 a.
Figure 6

Fig. 7: A. Numbers of individuals and species of fishes taken at night from Stations 1 and 4 (14 trawl tows) in the Apalachicola Estuary from April, 1972 to March, 1974. Also shown is the top dominant for each month so that total numbers $\left(N-N_{1}\right)$ appear as a function of time.
B. Comparison of Shannon diversity $/ \%$ dominance $\left(\frac{N}{N}\right)$ of fishes taken at night from Stations 1 and 4 (14 trawl tows) in the Apalachicola Estuary from April, 1972 to March, 1974.

Fig 8: Relative abundance (numbers of individuals) of the seven top specles of fishes taken at all stations in the Apalachicola Estuary on a monthly basis from March, 1972 to February, 1974. Also shown are annual totals of numbers of species (S), numbers of individuals. (N), numbers of individuals of all except the top dominant ($\mathrm{N}-\mathrm{N} 1$), and numbers or individuals of all except the top 2 dominants $\mathrm{N}-\left(\mathrm{N}_{1} * \mathrm{~N}_{2}\right)$.
Anchoa

TABLE 1: Results of 2-way analyses of variance (by month, by year) for physico-chemical and blological parameters of the Apalachicola Bay System taken over a 48 -nionth period (March, 1972 to February, 1976). [acluded are various indices used in the overall statistical analysis.

INVERTEBRATES

Table 2: Factor analysis of a set of physicuchemical variables taken from March, 1972 to February, 1976. Color, turbidity, Secchi readings, salinity, temperature, and chlorophyll A were noted at Station 1 in the Apalachicola Estuary Tidal Data included the stages of the tide on the day of collection while the wind variable was represented by 2 vector components.

Variable	Factor 1 (49.0\% of the variance)	Factor 2 (22.3\% of the variance	Factor 3 (17.9\% of the variance	Factor 4 (10.8\% of the varigire
River flow	-0.82	-0.08	-0.07	-0.08
Local rainfalt	-0.04	-0.30	-0.09	0.20
Tide (incoming or outgoing	0.26	0.61	-0.68	0.05
Tide (high or low)	0.09	0.39	0.61	-0.37
Wind direction ($E-W$)	-0.02	0.09	0.36	0.37
Wind direction ($\mathrm{H}-\mathrm{S}$)	0.10	-0.20	0.22	0.31
Secchi	0.57	-0.07	-0. 17	0.24
Color	-0.80	0.33	0.01	0.07
Turbidity	-0.73	0.54	0.08	0.23
Temperature	0.38	0.15	0.02	-0.18
Salintty	0.68	0.21	0.23	-0.02
Chlorophyll A	0.47	0.51	0.09	$\cdot 0.31$

Table 3 : Concentrations of DU'-R and Arochlor 1254 ($\mu \mathrm{g} / \mathrm{g}$) in sediments taken Eron Lake Seminole and the Apalachicola Bay System from March, 1972 to October, 1973

Lake Serinole				Apalachicola Bay System					
Station	Date	DDT-R	$\begin{gathered} \text { Arochlor } \\ 1254 \\ \hline \end{gathered}$	Station	Date	DDT-R	$\begin{gathered} \text { Arochlor } \\ 1254 \\ \hline \end{gathered}$		
i	4/72	0.000	0.000	1	3/73	0.000	0.000		
	5/72	0.005	0.005						
	7/72	0.000	0.000	2	3/72	0.000	0.000		
	10/72	0.007	0.000		4/72	0.000	0.000		
	7/73	0.002	0.009		6/72	0.000	0.000		
	8/73	0.000	0.000		7/72	0.000	0.000		
	10/73	0.005	0.016						
2				3	3/72	0.000	0.040		
	4/72	0.005	0.039		4/72	0.000	0.000		
	5/72	0.000	0.000		7/72	0.000	0.000		
	6/72	0.000	0.000		11/72	0.000	0.000		
	7/72	0.000	0.009						
	8/72	0.000	0.000	4	6/72	0.000	0.000		
	4/73	0.002	0.002		7/72	0.000	0.000		
3					11/72	0.000	0.000		
	$4 / 72$ $5 / 72$	0.010 0.016	0.000 0.000		1/73	0.000	0.000		
	6/72	0.000	0.000	5	11/72	0.000	0.000		
4					12/72	0.000	0.000		
	$\begin{aligned} & 4 / 72 \\ & 5 / 72 \end{aligned}$	0.024 0.007	0.000 0.000	6					
	10/72	0.000	0.000 0.000		6/72 7/72 11/72	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$		
	4/73	0.028	0.003						
	7/73	0.000	0.008						
	8/73	0.000	0.000	7	3/72	0.000	0.000		
5					$6 / 72$	0.000	0.000		
	4/72	0.003	0.000		7/72	0.000	0.000		
	5/72	0.000	0.000	- -	11/72	0.000	0.000		
	7/72	0.000	0.009						
	8/72	0.000	0.000						
	10/72	0.000	0.019						
	4/73	0.002	0.001						
	7/73	0.014	0.008						
6	4/72	0.000	0.000						
	5/72	0.052	0.000						
	6/72	0.000	0.000						
	7/72	0.000	0.000						
7	5/72	0.000	0.000						

acrimp

1. Trita sombir

Tens

$$
\begin{aligned}
& \text { ebole nely } 477 \\
& \text { nely }
\end{aligned}
$$

bubativ	1/7	$\begin{aligned} & 0.029 \\ & 0.064 \end{aligned}$
	177	Cuter
meelt	373	$\begin{aligned} & \text { 4.093 } \\ & \text { 4.043 } \end{aligned}$
coule low catpal is	4/75	0.ert
		0.007
		直.014
metay	$3 / 7$	0.001
		6.041
-trelt	6/72	6.009

nett	11/7
-104t	52ts

* + *

307.

Table 7 : Ratios of DDE:DDT found in Rangia cuncata at the head of the Apalachicola estuary from farch, $197 \overline{2}$ to fovenber, 1974.

Date

March. 1972
1.00

April
1.60

May
0.24

June
0.85

July
0.47

September
0.36

October
0.36

Novenber
0.40

December
0.48

January, 1973
0.36

Harch
1.18

May 1.38
August
14.00

September . . 0.63
October
1.20

Novemher 7.00
December 3.00
January, 1974 3.00
February 1.00
March 2.17
Hay 1.00
June 35.25
Hovenitur 6.40

兌
号

$$
\begin{aligned}
& \text { totals }
\end{aligned}
$$

315.
310.
 ${ }^{9}+$

خَy
ָَun
zangia cuyeata

busycon Lizmikakljh

procambarus penaenjalanushemipholus elongatatatals

$\begin{aligned} & 9 \\ & 5 \\ & \hline \end{aligned}$	\cdots		N	NM	$+$	$+\cdots$	$-1 \underset{~}{4}$	4	$+4$	$+-4$	$+4$
$\begin{aligned} & \mathbf{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{*} \end{aligned}$	$$	\cdots	3		$\begin{array}{r} 3 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 33 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 3 \\ 7 \end{array}$	3 -3 -	$\begin{array}{r} \text { Hin } \\ 0 \end{array}$	$\begin{array}{r} 30 \\ 0 \end{array}$	$\begin{array}{r} 3 \\ 6 \\ 6 \end{array}$
$\stackrel{+4}{\underset{\sim}{3}} \underset{\sim}{\boldsymbol{*}}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{array}{r} 37 \\ 7 \end{array}$	0	3 3 3 8	$+11$	$\begin{array}{r} 3 \\ -3 \end{array}$	$\begin{aligned} & 3 \\ & = \\ & \hline \end{aligned}$	$+4$		$\begin{array}{r} 68 \\ 0 \\ \hline \end{array}$	$+\mathbb{4}$
	neth				$+$	$\xrightarrow{+}$		+7 +	$\stackrel{5}{-}$	$\begin{array}{r} +\infty \\ e \end{array}$	路
	$\begin{array}{r} 3 \\ 3 \\ 6 \end{array}$	$\begin{array}{r} 3 \\ 3 \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{array}{r} 7 \% \\ ? \end{array}$	3	$\begin{array}{r} 37 \\ 7 \\ 7 \end{array}$		37	37 8	$\begin{array}{r} 3 \\ 3 \\ 0 \end{array}$	37 3 8
$\begin{aligned} & \text { + } \\ & \text { - } \\ & \text { in } \end{aligned}$	7	$\begin{array}{r} \rightarrow+ \\ \\ \hline \end{array}$		$\underset{0}{0.0}$	$7 \underset{2}{2}$	$\begin{array}{r} 73 \\ 4 \end{array}$	$?$	7	7 7	$\rightarrow+4$	\rightarrow
	$\begin{array}{r} 7-1 \\ ? \\ ? \end{array}$	$\begin{array}{r} ? \\ ? \end{array}$	3	3 3 3	$\begin{array}{r}3-7 \\ \hdashline \\ \hdashline\end{array}$	\%	278	3	$\begin{array}{r} 3 \\ ? \end{array}$	$\begin{array}{r} 7 \geq \\ ! \end{array}$	늘 $?$
	3	3	3:	$7:$	$+3$	4	$\begin{array}{r} -4(4) \\ 3 \\ \hline \end{array}$		$\begin{array}{r} 3 \cdot 3 \\ 3 \end{array}$	$\begin{array}{r} 3 \\ \vdots \\ \vdots \end{array}$	\rightarrow
$\begin{array}{cc} \infty & 1 \\ \infty & 4 \\ 0 & \mathbf{4} \\ 0 & 0 \end{array}$	3		± 0	$\begin{array}{r} 7 \\ \text { ! } \\ \hline \end{array}$	3	3	3	$\begin{array}{r} 3 \\ 3 \\ 3 \end{array}$	3	$\begin{array}{r} 3 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 3 \\ 3 \\ 3 \end{array}$
	3	$\begin{array}{r} ? \\ \mathbf{~} \\ \cdots \end{array}$	3	$\begin{array}{r} 7 \\ 7 \\ 7 \end{array}$	$\begin{array}{r} 3: 7 \\ ? \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 3 \\ & 3 \end{aligned}$	3	$\begin{array}{r} 3 \times 7 \\ ? \\ \hline \end{array}$	$\begin{array}{r} 3 \\ 3 \\ \hline \end{array}$	$\underset{9}{95}$	\square 8 8 8
$\begin{aligned} & n \\ & \mathbf{n} \\ & \mathbf{n} \\ & 0 \\ & 0 \end{aligned}$	3	$\begin{aligned} & 3 \\ & 3 \\ & i \end{aligned}$	$\begin{array}{r} 3 \\ 3 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ \vdots \\ \therefore \end{array}$		$\begin{array}{r} \text { ry } \\ 3 \\ 3 \end{array}$	$\begin{aligned} & 3 \\ & 9 \end{aligned}$	$\begin{array}{r} 33 \\ 6 \\ 9 \end{array}$	$\begin{array}{r} 3 \\ 3 \end{array}$	$\begin{array}{r} 37 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 03 \\ 0 \\ \hline \end{array}$
	$\begin{array}{r} 3 \\ \hdashline \\ \therefore \\ \hline \end{array}$	3		$\begin{array}{r} 3 \\ 3 \\ 3 \end{array}$	75 0 5	$\begin{array}{r} 3 \\ ? \\ ? \end{array}$	$\begin{array}{r} 73 \\ 4 \\ \hline \end{array}$	¢	?	$\begin{aligned} & 30 \\ & 3 \\ & \hline \end{aligned}$	0
	$\begin{array}{r} 34 \\ 3 \\ \vdots \end{array}$	v_{y}	-•	$\begin{array}{r} 7 \cdot 3 \\ 3 \\ 3 \\ 3 \end{array}$	3	$\begin{array}{r} 2.3 \\ +3 \\ + \end{array}$	$\begin{array}{r} 37 \\ 7 \\ 7 \end{array}$	$\begin{array}{r} 3 \\ \vdots \\ 3 \end{array}$	$\begin{array}{r} 3 \\ 0 \\ 0 \end{array}$	$\underset{\sim}{3}$	$\begin{array}{r} 40 \\ 5 \\ 5 \end{array}$

Un min in 320.

 	151 1： $\checkmark 1 A=1$	4n Tád 3 6 iu ．	$\text { - j: } 9$	mary enth		ates	¿iomass taken i march	（by spec the Ap	palach	$\begin{aligned} & \mathrm{mo} \\ & \mathrm{a} \end{aligned}$		ns	$.2,3$
SPECIES	$\begin{aligned} & 5 \Delta+\mathrm{FLE} \\ & 7 \in=325 \end{aligned}$	Jates 72． 215	$7 \leqslant .215$	72．512	72．7．5	1くす3＊	36．ぎ，	764．1）	8¢12．5	721215	736125	733215	TUT4ts
GALLINLLİコ 3aplous	16t．es	14 81.59	${ }^{5} 6.85$	979.72	iijo．ji	320．0．		54i）：${ }_{6}$	5.9000		897：33	175．09	\＄5¢7．7\％
PENAこU，SEitFミれd，	35：12	2．ぎ		－．．	17．54	$\because 2$	－ 0 品	1437：313	4.73005	13：3\％	1．59	2．27	2717：${ }_{3}{ }^{2} 78$
PENAEUS ALTEZUS	1．7\％	1．93．	288.67	$6+078$ 0.6	10．30	jo．${ }_{0} 7$	3：91	1．33	jesj	\＃\＃	309\％	＋ 30	27\％．75
PENAEUS JUOKARJH	W．045	5．89	$1<.57$ 1.02		4．29	3．3号	9.72 +065	77， 3 3 ${ }^{\text {3 }}$	35.77 3.24	32．13	28．74	4．892	
LOLLİUNCULA BREVIS	U．N：	－¢－j	4．57	19．718	29．07 $16 . j 6$	52： 43	©：$: 17$	45：37	3\％．58	¢0．j	－68	吅品	157．68
GALLINECTES SIMILIS	皆等		C．${ }_{\text {cu }}$	¢	如：u	－46	\％	4．19	2＋0．j	i．6？	16．54	7． 51	7ヶ． 36
palachonetes pugio	． 42	14.54 14.49	8.92 1.15	5.67 .53	．13	：13	1．64	3．EA	－0．${ }_{0}$	0.12	1.22 $.9 E$	4．45	32：07
SQJiLla EMPUSA	O． 06	C0．0．	¢．05	〕．64	$: .7$	－保		14： $\mathbf{1}_{57}^{7}$	3.30 .58	3.173	dous	1．75	27．22
PORTUNUS Sibesjil	¢006	＂：${ }^{\text {¢ }}$		－18	6． 6	．18	\％ 304	11．35	12．05	－ 25	． 73	.77	25． 37
ramila guneata	5， 60		－\％ 40	4.3 +40	8．30	4＊3\％	\％．8．un	： 85	－ 86	．85	1．72	d．tidu	25．54
POLLINIGES DUP－ICATUS	C．0¢	C．00	j－tju	－52	2．33	30． 0	1． 651	3．1．4．	3：3）	1．3）	8，ib	品部	7．19
MENIPPE YEマCENARTA	Q0．45	C．30	O．00	3 y	¢000	ゴ号出	\％0w	4.73		． 38	2006	a， 0	3.30
BUSYCON CONTRASIUH	g．go	4070	Sidid	juguy		\％ 319	i： U4 4	\｛：3\}	3000	2.23 1.13		＊08\％	2．2．3．
PalaEmonejes volsaris	．84	．13	0．4ut	－： 16		：36	jotut	.13	－43	1．83	\％．48	－13	1．3） 3
meritina reclivata	6． $6:$.23	．62	． 33	Cou4	3．146	f：4	\}:3i	3．ud	20， 4	204	． 83	2． 43
RMITHROPANDPEUS HARRISII	3.00400	24054 +17	－24637	.13 .48 .41	． 43364	－ $213+9$	－+1349	1．dj：j！		Jeviduj		．16534	－947． 7
TRAGHYPEMAEUS CONSTRICTUS	0.00490		小－ututu	－ 0 Ojud	． 6.6672	： 6774	． 23.3444	－63513	． 88867	＊－9idil	0． 0.4 gy	O．ṫdy	－94330
ANADARA brasiligana	O．0iciout	3.00589	0.00iogu		W．© yiju		vostictut	dovjdjd	doudugd	d003．3t	． 5.568		－5issit
DINOEAROIJY ROBUStJt	U－4g940	9．0Gud	J.OJuGU	U.0ujut	*Suduy	－0才すuj	O－W？	2． 43.3$\}$			－53564	A－4．380	．5．55i
Paguzus pjllicaris	0.0 哭枵				O.W	L. Qjisio	$\begin{aligned} & u+4 \neq u b u \\ & 0 \end{aligned}$	．64343	dustixju	3－0jditi	3．J小3等	0.63304	．46240
SİYONLA JORSA．IS	－ 0.01080	0．00ciju	O. Gduvi	نَك	$\text { B. } 60030$	0，03034	devayun	－ 53333	b．0¢usu	derijuju		Lithagd	－15838
HEDPANOPE PACKARDIL	\cdots－0cget		$3.04 \operatorname{civ}_{4}^{2}$		U- Sucut	－ 220.38	U.U;i.60	2003133	6．0．gud	－ 0285	－15421	$0.0 i z 04$	－15336
Palamhon florioanus	U. Of	$9.040,1$	$\begin{gathered} 4 . J u F \\ u+0.4 \end{gathered}$	u.anju	$\text { 6. } 4.2 נ 6$	－ 6.634	V.	，13 303	dodjund	$\text { - } 43243$	U.UEGJ		$\begin{array}{r} .1230 \\ * * \end{array}$
palaghoneties interyedids	Bevulct	O－tiody		－092．51	Ue buyt		Low: Uuw	－＋ 330	J．jJJ」d	＋03jij	4＋3509t	6olidigu	－1159\％
herapanopeus angustifruns	0 OCutst		」からき det：	－010	ocu:day	－10＋3	吅吅	A．دidju	d．ditas		dobidut	datitut	－ 40.148
PrJCAvBARJS PEMAENSALANJJ	cotuts		小－6ius	\cdots＊＊inc		－U：ل．	\cdots	J．J．：$:$ ：	NGU：Cus	arudid	－ 95.5	＊ 0 didu	－ 09386

Totals
322.

 7
\vdots
\vdots
\vdots $3:$
\vdots
$:$
i 7
$?$

 n
n
n
\vdots $7 ?$
$?$
$?$

OIEfd S313NOHZV7vd
poztunus jiadesic
squilla eafusa
pemaeus aztecus
SIT1世IS SE103NITาV

vivatioje vnille 3 N

I ISIAYV Sntdonvdothithy
lusdia clathrata

mEOPANOPE PACKAROLI
PALAĔMONEFES INTEKYEJIJS
METAPORHADHIS CALCARATA

326.

 ？
事事
事
\Rightarrow
\Rightarrow No
N
N 3
$: 3$

－

：
品：
 2

1
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

 3 ${ }^{2}$ ： $:$ $:$ 늘 No 국 $:$ ； \rightarrow $:$ 3 ？ ？

		$\begin{aligned} & \mathrm{No} \\ & \mathrm{~B} \cdot 4 \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \pm+ \\ & +\infty \\ & 0 \\ & 0 N \end{aligned}$	$\begin{aligned} & 7 \% \\ & 40 \\ & 4 \end{aligned}$	$\begin{aligned} & 7 \\ & +1 \\ & * \end{aligned}$		$\begin{aligned} & \text { Fin } \\ & \text { Nin } \\ & +3=4 \end{aligned}$	mon ${ }^{\circ}$－ 4	$\begin{aligned} & 3 \\ & +0 \\ & +4 \end{aligned}$	$\begin{gathered} 4.3 \\ -4.3 \\ 0-1 \end{gathered}$	$\begin{gathered} \text { the } \\ \text { in. } \\ \hline \end{gathered}$	$\begin{aligned} & 50 \\ & 5 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & -104 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { Mot } \\ & { }_{-0} \end{aligned}$	$\begin{aligned} & 4+1 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { res } \\ & \text { te } \\ & \text { tis } \end{aligned}$	$\begin{aligned} & 9.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & \operatorname{arc} \\ & +\infty+4 \end{aligned}$	
$\begin{aligned} & 1+3 \\ & 4+4 \\ & 4 y \\ & 4 n \\ & 4 n \end{aligned}$		$\begin{aligned} & \text { +4x } \\ & n+1 \\ & n \end{aligned}$	$\begin{aligned} & \text { itw } \\ & \text { ind } \\ & \text { nd } \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \\ & =17 \end{aligned}$			$\begin{aligned} & \text { RN } \\ & \text { Hin } \\ & \hline \end{aligned}$	9	$\begin{aligned} & \operatorname{css} \\ & \cos \end{aligned}$	${ }_{-1}^{2+0}$	$\begin{aligned} & \text { nnt } \\ & 13.2 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & \square 9 \\ & 175 \\ & 4 \end{aligned}$	$\begin{aligned} & +\infty \\ & +4 \\ & +6 \end{aligned}$	$\begin{aligned} & \text { Mry } \\ & \mathrm{N} ? \\ & \hline \end{aligned}$	9	$\begin{aligned} & 73 \\ & \hline 50 \\ & \hline 10 \end{aligned}$		

320.

 0
0
0
0
0
0
0
0
0
0
0
0 4

330.

$\underset{0}{9} \underset{0}{9}$
 ${ }^{\circ}$ $\stackrel{9}{0}$ － 0.01

 NA第品

感 ： 8
N．范
 $\stackrel{0}{9}$ ＊R ＊ $\xrightarrow{7}$
 mo \div 응 7 $\begin{array}{ll}\text { Estuary } \\ \text { ebruary，} & 1977 \\ 720915 & 721015\end{array}$
 7卲 $\underset{\sim}{\infty}$
 $=$ $\stackrel{0}{\square}$ $\stackrel{\bullet}{\bullet}$ $\stackrel{-}{\square}$ 7 － $\underset{\sim}{*}$ \cdots 0 $\stackrel{9}{0}$ Non

－0
 $\stackrel{0}{\bullet}$ 9

 온

 궁 응 ing $\underset{\sim}{n}$ Mn

 ∞ No $\stackrel{m}{9}$0NN NN$\stackrel{0}{0}$

$\xrightarrow{\square}$

煰$: \cdots$2
2
0
0
0
0
2
2
2
0Summary of total numbers

$$
\underset{\sim}{*}
$$

©

$$
0
$$

00 No

$$
\underset{\sim}{\infty}
$$

: of og eg ty

$$
\underset{\sim}{+1}
$$

No Noy

$$
\mathfrak{n}
$$

品
O
ب\%몽$\cdots$$\stackrel{\sim}{\sim}$OHMp品 m＂om$\stackrel{9}{7}$

$\stackrel{8}{\square}$

讙$\stackrel{\circ}{9}$
模영 은$\stackrel{n g}{:}$C
$\stackrel{C}{4}$
을
NiN，

$$
\stackrel{9 n}{\square}
$$

trinzetes maculatus

PRIONOTUS tRIBULUS

symphurus plagiusa

UCANIA PARVA

henioia bertllina
goeiosoma eosci
S30108NOH\＆NOOOSYา

n
3
0
0
0
0
0
3
0
0
0
0
0
0

cyhoscian mebulasus
OASVATIS SABIMA
ORTHOPDLSTIS GMRYSOPTERA
SYNGNATHUS SCONELLI
EUCINOSTOMUS ARGENTEUS
RREVOORTIA PATRONUS
EUCLNOSTOMUS GULA
SYNOJUS FDETENS
Sn13Hd3N S3CIOXEOHdS

PEPQILUS PARU
PARALICHTHYS LETHOSTIGNA
PORICHTHYS POROSISSIMUS
SYNGNATHUS FLORIOAE

LEPLSOSIEUS OSSEUS
STNGNATHUS LOUISIANAE
SINYOIAOTS SIOAHdOAA
Sn7\%Hd300」veoyd Sn98vSOH9\&\%

HONACANTHUS CILEATUS
OOPOSOHA PETENENSE

3vา09\%SN3d 7n9n38vm
CEMTROPRISTIS MELAMA

SCIAENOPS OCELLATA

ALOSA ALABAHAE

Sndys Snenty 191
Snlvisund snanาvior
honaganthus hisplous 43H0N 3N373S

MChOA HEPSETUS Table 10, Species	$\begin{array}{r} \text { Q.8 } \\ \text { SMYPL } \\ 720315 \end{array}$	$\begin{gathered} 0.00^{1} \\ 0.820415 \end{gathered}$	$\begin{array}{r} 0.06 \\ 720515 \end{array}$	$\begin{array}{r} 0.0 \text { 盘 } \\ 720615 \end{array}$	720715	$\begin{array}{r} 0.00 \\ 720825 \end{array}$	$\begin{gathered} 0.08 \\ 720915 \end{gathered}$	$\begin{array}{r} 0.15 \\ 721945 \end{array}$	$\begin{array}{r} 4.06 \\ 72 \pm 145 \end{array}$	$\begin{array}{r} 0.4! \\ 721225 \end{array}$	$\begin{array}{r} 0.4 i^{1} \\ 73115 \end{array}$		
IPLECTRUN FORHOSUH	$4.0{ }^{0}$	0.80	0.08	$0.0 \frac{8}{4}$	-.06	E. 40	6.4	8.08	. $0 \frac{1}{4}$	$0.0{ }^{0}$	4.88	H.86	1 $\cdot 8$
HOCOSOMA CEPECTANUH	- $0^{\text {ec }}$	e. 0.0	0.08	-6.94	4.06	0.85	0.04		0.00	$.1 \frac{1}{6}$	9.818	0.4	-0 $0^{\frac{1}{4}}$
UTJANUS GRISEUS	0.06	0.03	0.04	0.40	5.46	0.50	-6. 0^{8}	. $0 \frac{1}{2}$	- 0.00	9.Ef	0.08	9.98	- 0
APhICHTHUS GOHESI	c.te	.14	0.04	0.40	0.0\%	0.08	1.86	1.80	- \cdot 自 ${ }^{\text {a }}$	0. 0^{3}	0.08	C.t3	- ${ }^{1}$
'RIONOTUS RUBIO	0.08	0.06	$.0 \frac{1}{6}$	4.06	0.08	6.08	$0.0{ }^{6}$	$0.0{ }^{8}$	4.80	0. 8	0.til	\%-8	- $1 \frac{1}{4}$
HHIMEPTERA RONASUS	6.00	0.64	0.08	$3 \cdot 0{ }^{\text {a }}$	0.06	.15	0.60	1.80 ${ }^{\frac{3}{3}}$	0.0 0^{3}	$3 \cdot 8$	0.38	-80	1
'RACHIMOTUS FALGATUS	$0,9 \frac{0}{0}$	- 000	0.06	0.48	. $8^{\frac{1}{4}}$	0.8 ${ }^{8}$	3.06	4.8	8.39	- ${ }^{\text {d }}$	0.08	B.8t	- $3^{\frac{1}{4}}$
TOTALS	452.0	991. 3	1814*	1579.0	20 04.8	681. 1	925. 4	5875.1	48418	78tel	354.en	1544.0	32586.

symemathens loulsianae
ithaetadipterus faber

- Lepisosteus osseus

prionotus scitulus

Snา3Md3\# s3010a30Mds

3agre marimus

quGIL CURENA
STEGLIFER LANCEDLATUS
INCYCLOPSETTA QUADROCELLATA

Snly 19Mnd Snynvivi
JPHIGNTHUS GONESI
SImOYS SVINOSO
nyta SnาIzd3c

\title{

336.

는

spectes
GOEIOSOMA BOSCI
SYNOOUS FOETENS
GOEIONELLUS BOLEOSOMA
UROPHYCIS FLORIOANUS
OASYATIS SABINA
PRIONOTUS TRIBULUS
SYNGNATHUS ZOUISIAMAS
LAGODON RHOMBOIOES
GOEIOSOMA ROBUSTUM
ICTALURUS CATUS
SPHOEROIDES NEPHELUS
bagre marinus
CHETODIPTERUS FABER
PORTCHTHYS POROSISSIMUS

ASTROSCOPUS Y-ERAECUM
SaranX hippos
MOSOHzOA Mny do37dIC
sn3sso sn31sosId39
V83140Sazha stisiydohlac
POLYOACTYLUS OCTONEMUS

EHILONYCTERUS SCMOEPFI
SIPLODUS MOLBROOKI
HYPSOBLENNIUS HENTZI
snssixg snmwint

 No $+$ $+6$ Nㅏㅇ N $\stackrel{y}{0} \underset{0}{\text { mog }}$

 Hos. . 6 8.需 N gn . N 0 ne คึ He N.. mis M totals $\stackrel{0}{0}$
 512092
 $\cdots \cdots$
药 : Nan Mo

 180 ㅂ․․ \cdots 9 $-$ \because 8 * $!$

MICROPOGON UNOULATUS
ANGHOA MITCHILLI
LEIOSTOMUS XANTHURUS
BREYOORTIA PATRONUS
CYNOSCION ARENARIUS
TRINECTES MACULATUS
SYMPHURUS PLAGIUSA
BAIROIEILA CHRYSURA
ETROPUS CROSSOTUS
HICROCOBIUS GULOSUS
FARALICHTHYS LETHOSTIGMA
FARALICHTHYS LETHOSTIGMA arius felis
Lagodon rhomboides
Snev7039kvา ช3. 177315
UROPHYCIS FLORIOANUS
PRIOMOTUS TRIBULUS
gOBLONELLUS BOLEOSOHA
SYNGNATHUS FLORIOAE
SYNGNATHUS SCOUELLI

migROEOAIUS THALASSINUS
HENTICIRRMYS AMERIGANUS

PEPRILES BURTI
GOBIOSOMA BOSCI
OOROSOHA PETENENSE
CHLOROSCOHBRUS CHRYSURUS

PORICHTHYS POROSISSINUS BRGRE MARINUS

Sn7vHe39 719 Ow
ICTALURUS Punctates
Sn73He3N SJoroyjohds

ษ7n9 SกMOLSONIJก3

LEPISOSTEUS OSSEUS
ORT HOPRISTIS CHRYSOPTERA
PARALICHTHYS ALEEGUTTA
PRIONOTUS SGITULUS

nvy $\operatorname{sntradZa}$
CHAETOAIPTERUS FABER
CHASHODES SHEURRAE

$$
345 .
$$

 응 8.
0
0
0
0
0

$$
\bar{z}
$$

porichthys porosisstmus
oiplectiun formosum
urophrais floridonus
sctakhops ocellata
symgathus floditaf
SYMGNATHUS SCOVELLI
SHIVISth Sחר77noIeng
3พWVISInO7 SOHIVNONAS
monacanthus hisptious
PRIONGTIS RUEIO
SONOZIVA VIIdOOA3at
 HLUTE=US SC:HJEFI
LUTJAPMS GRICEUS

347.
348.

archosargus pogpatucfahalus

chaetcdipterus fabep
 prionotus tribulus

upophyiis flopidanus
mentoia beryllina
ANCHOA hEPSETUS
microgobivs wthosus
centropristis melana
gobionellus mastatus
poricr.thys forosissimus
dorosoma pe tenetise

PEPRILUS BURTI
stiaenops ocellata

Stellifer lanceolatus
opsanus beta
brevodrtia patronus
momacatithes hisfious
tucania parva
amevilla rosteata
PRIONOTUS SAItULUS
myROPHIS PUNCTATUS
\square.090 .0088
0.
0
0.05090
.00PR
0
0
0
0
0
0

pfecies

NGHATHUS STOVELL \dagger

OSIONELLUS BOLFOEOMA
YNGNATHIJS LOUISTAMAE
UGIL CURERA
MRANX HIPPOS
nCYCLOPSEITA quadrocellata

EPRILUS PARU

IGOPLITES SAUGUS

ELENF VDMER

YNGNATHUS FLORITAE
aralichthys albiguita
of IOSOMA ROBUSTUM
TICROPTERUS SALMOIDES
;TRONGYEURA MARINA

SPECIES
StELLIFER LANCEOLA TUS
TAREN ULA DENSACCL AE
EUCIMOSIOHUS GULA
CHLOROSCOMBRUS CHRYSURUS
POGONIAS CROMIS
PRIONOIUS TAIBULUS
ECHENEIS NAUCRATES
ORTHOPRISTIS CHRYSOPTERA
ORTHOPRISTIS CHRYSOPTERA

GREVOORTIA PATRONUS
Iddヨ0：3S SnIJITANOTIHJ
3SN3H313d UHOS0d00
d39\＃s snd 31 dIOf13 3 FHJ
STHVOIZOTJ SIJAHdOdn
MICpgGo日itus rulosus
OPHICHPHUS GOHESI

SPHOEROIDES NEPHELUS
 THYIHM SIISIXdOALN3D

ICEALURUS PUNCTATUS
Sni35d7H VO43NT
SOMISS 150ㅇot SAHd HOTZOd
LUCRNIA PARY品
$15 S 0 \%$ VHOSO1809
GOBIONELLUS HASTATUS
SYNGMa THUS SCOVELLI
PRIONOTUS SCITULUS
웅
N
N
in
\mathbf{N}

 붐
 Be
 $8=$
0
0
 A

0.00
0.00
41015

웅
효

总
官
$\xrightarrow{-1+1}$
EO
0
品
\cdots
윽
옹 응
R日
8
$\stackrel{y}{3}$
B ． 8 9品品

88
80
1

0.
1.

0
0
0

$0.9 n$
8.00
747515 80
8
0
0
0
0 De
E．
\vdots
\vdots

$$
740614
$$

$$
199
$$

 00000% COOUU 0

 88 08

0.09
8.00
74515

 $\stackrel{+}{+}$
 을
0
\vdots
\vdots
0 를
䔍 $\stackrel{0}{3}$

 ： 름 율 0.00 AUB 0.0 giogo

8
8
$\stackrel{8}{\circ}$

peprilus paru

SPECIES
 alosa alabamae
 DEFRILUS BURTI SYNLNATHUS LOUISIANAF OIPLECTRUM FORMOSUM
 DEFRILUS BURTL SYNLNATHUS LOUISIANAF OIPLECTRUM FORHOSUM
 MICROR OBIUS THALASSINUS

MONACAMTHISS HISPIDUS
SYNGNATHUS FLORIGAE
DPSANUS RETA
ANGUILLA ROSTRATA
בOBIONELLUS BOLEOSOMA
H YKOPHIS PUNCTATUS
CARANX HIPPOS
I YOOHETOH Sm307dIO

HUGIL CUREMA

LUTJANUS GRISEUS

gobiosoma robustu

ANCYGLOPSETTA QUAOROCELLATA
PRIONOTUS RUBIO
OLIGOPLITES SAURUS

SELENE VOHER

SAKOIHELLA ANCHOVTA
ALUTEDUS SCHOEPFI
SPHYRAENA ROPEALIS
POHATOHUS \＆ALTATREX
SndVITIT SOHDAFSYNOW

IRANX BAPTHOLOMAEI
totals
iTROSCOPUS -GRAE CUH
TPONGYLURA MAREMA
CROPTERUS SALMOTDES
RALICHTHYS ALBIGUTTA

IRALICHTHYS ALBIGUTTA
 Bitar. Bitio. org
 $1+25$

ニ上

気

SPECIES	SAMPL	cates 750415
dastatis sabina	274．50	98.22
Lepisostelis osseus	244.53 20.53	264．37
Arius felis	36．94	438.54
arehosargus probatoce phalus	4．08	0：000
MICROPOGON UNDULATUS	162.77 13.65	250.70 1782
brevocrita patponus	2.71	11.25
anchoa mitichilli	22：04 105	674.57
papalilhthys letoostigha	44.59	20.87 1.42
Leiostomus xanthurus	125．90	169.11 12.91
bagre marinus	9：00	0000
ictalurus catus	39．24	5，00
cynosition arenarius	\％：70	3.22
bairoiella chpysura	24．09	6.22
teinectes malulatus	99．3n	6.75
sciaenops ocellata	2．46	
morgne chry sops	4．00	80.00
etropus crossotus	2.25	${ }^{10} .29$
Synodus foetens	0．00	3.00 0.00
cymoscion nerulosus	7.48	43.27
micracobius i－ulosus	$\begin{array}{r}5.47 \\ \hline 8.9\end{array}$	35.47 2.42
nuill cefmalus	8．094	．38 3
pogonias crunis	0．40	9.08
mfntirirruis amepicanjs		9．30
Symphueus plagiusa	14．118	4.53
Lawocon khomboides	：03	＋．178

的

SPECIES

JROPHYCIS ELORIDANUS

DOROSO4A PETENENEE
LUCANIA PARJA
EUCINOSTOMUS GULA
CHL OROSCOHERUS CHRYSUPUS
OTPLEGTRUH FORMOSUH
ANCHOM HEPSETUS
MENIDIA BERYLLINA
PEPRILIS PARU
PRIONOTUS TRIEULUS
ANGUILLA ROSTRATA
SYNGNATHUS SCOVELLI
GOSICSOmA BOSCI
EUCINOSTOHUS ARGENTEUS
SPHOEROIDES NEPHFLUS
HICROPFERUS SALHOI EES
PORICr.THYS FGROSISSIMUS
LUTJANUS GPLSEUS

[^1]CENTROPRISTIS MELAMA
g DEIONELLUS KASTATUS
MUGIW SPECIES
GOPIONFLLUS BOLEOSOMA
ANCYCLOPSETTA DUADFOCELLATA
TICROROEIUS THALASSIHUS
$$
358 .
$$

Fig l: Chart showing the primary study areas in the Apalachicola Drainage System. This includes distribution of permanent stations in the impoundment above the Jim Woodruff Dam (Lake Seminole) and the Apalachicola Estuary.

Fig 2: Changes, by month, of Apalachicola River flow (cubic feet per second) and two major physical functions (temperature, in centigrade; salinity in parts per thousand) monitored at station (bottom) in the Apalachicola Estuary from March, 1972 to February, 1976. The monthly means and ranges of river flow at Blountstown (Florida), as measured by the U.S. Corps of Engineers (Mobile, Alabama), are represented.

RIVER FLOW.cfs

Fig 3: Residues of DDT-R and Arochlor 1254 found in organisms taken in the Apalachicola Estuary from March, 1972 to November, 1974.

Fig. 4: A. Residues of DDT and its major metabolites found in clams of the Apalachicola Estuary and expressed as percentages of the total (DDT-R) on a monthly basis from March, 1972 to November, 1974.
B. Residues of DDT and its major metabolites found in Sciaenid Fishes of the Apalachicola Estuary and expressed as percentages of the total (DDT-R) on a monthly basis from March, 1972 to Juty, 1974.
C. Residues of DDT-R and Arochlor 1254 found in Sciaenid Fishes taken in the Apalachicola Estuary March, 1972 to June, 1974.
D. Residues of DDT-R and Arochlor 1254 found in Micropogon undulatus taken in the Apalachicola Estuary from March, 1972 to June, 1974.

364 a.

FIGURE 4

Fig. 5: Changes in Margalef Richness (Mar), number of species ($\$$), Shannon diversity (H^{\prime}), and the number of individuals of invertebrates taken monthly from the combined stations (35 trawl tows) in the Apalachicola Estuary from March, 1972 to February, 1976. Dashed lines represent 6 -month mean values of these indices are relative dominance of the top species. Also shown are the DDT-R residues found in Rangia cuneata during this period.

FIGURE 5

Fig. 6: Changes in Margalef Richness (Mar), number of species (S), Shannon diversity (H^{\prime}), and the number of individuals of fishes taken monthly from the combined stations (35 trawl tows) in the Apalachicola Estuary from March, 1972 to February, 1976. Dashed lines represent 6 -month mean values of these indices and relative dominance of the top species. Also shown are the DDT-R residues found in Rangia cuneata during this period.

FIGURE 6

Fig 7: A. Numbers of individuals and species of fishes taken at night from stations 1 and 4 (14 trawl tows) in the Apalachicola Estuary from April, 1972 to March, 1974. Also shown is the top dominant for each month so that total numbers ($\mathrm{N}-\mathrm{NI}$) appear as a function of time.
B. Comparison of the diversity $/ \%$ dominance relationship of flshes taken at night from stations 1 and 4 (14 trawl tows) in the Apalachicola Estuary from April, 1972 to March, 1974. This is shown as function of the first and second year of sampling.

Fig. 8: Relative abundance (numbers of individuals) of the seven top spectes of fishes taken at all stations In the Apalachicola Estuary on a monthly basis from March, 1972 to February, 1974. Also shown are annual totals of numbers of spectes (S), numbers of Individuals (N), numbers of individuals of all except the top dominant ($\mathrm{N}-\mathrm{Nl}$), and numbers or individuals of all except the top 2 dominants $\mathrm{N}-\left(\mathrm{w}_{1}+\mathrm{N}_{2}\right)$.
a
Anchoa

1543 +84
238.70
1234.40
1043.16
925.40
771.54
617.24
462.96

$\begin{gathered} * \\ i \\ \hline \end{gathered}$

WIEKT SCATfEKis TGP TEN mHOLE GAY BIOMASS

3	3	8
	0	0
7	3	0

81.98
71.25
$\begin{array}{ll}\stackrel{2}{2} & 2 \\ \underset{\sim}{2} & \vdots\end{array}$
0
0
0
0
\rightarrow
\cdots
in
$\begin{array}{ll}3 & \overrightarrow{2} \\ \stackrel{y}{*} & \vdots\end{array}$

182.44
163.84
145.60
127.40
91.404
724.464

N:ERT >EAGTERS TOP TEN MHOLE DAY GIUMASS
CAFTCNGNAHEF

13.94
8.0 .45
6.97
3.40

$\underset{\sim}{*}$
$\begin{array}{ll}\infty & n \\ -4 & +\end{array}$

(Stations 1, 2, 3, Numbers (A) and B, 1A, 1B, 1C, 5A) From March 1972 through February, 1977.
Figure 22: SEATPE~S FTSH TOF TE4 N

SCATERS FISH TOP TEM M
> .374 .86
247.83493 23521 $=$
SIGntficance R -
Sto erron of a -
Sto error of b-
MISSINE values -

Figure 22, continued

Figure 23, continued

318.84
159.42
0
\forall

Figure 24, continued
SCETEPS rle tenfish oluyasc whole bay
SERETESTRENOF
Figure 25:
Figure 25, continued

$\begin{gathered} \stackrel{\rightharpoonup}{6} \\ \underset{N}{N} \end{gathered}$	$\begin{aligned} & \text { è } \\ & \stackrel{1}{\circ} \end{aligned}$	$\begin{gathered} \text { \# } \\ \stackrel{4}{4} \end{gathered}$	$\begin{aligned} & N \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{y}{*} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{gathered} N \\ \underset{\sigma}{N} \\ \hline \end{gathered}$	8	

400.

STATISTHES.
copectavion (P)-
STa.ear of est -
SIGNzFicince \rightarrow
sICHIF:Csince 3 -
PLATTEJ VALUES -

401.

$3 / 77$
SIGMIFIGANCE R -
STO ERROR OF -
Sto ERROR OF B -
MISSINS VALUES -
$*$

SCHTEES FISN T日F TEM
ETATSTIGS*
 stünificance a -

g
Figure 27, continued

237.09
185.30
$165.6=$
124.92
103.53
02.80
62.23
41.45
24.76

STATISTICS..

CORRELATION (R1-
STJ ERY OF EST
¢tavercintic
tgnificance
3t*eg valuts

Figure 28, continued.

557.97
447.72
330.54
220.36
110.13

$-.243!7$
n
Figure 29: Numbers (A) and Biomass (B) of Chloroscombrus chrysurus in the Apalachicola Estuary

Abstract

265.86 236.50 212.60 185.54 159.80 132.53 106.04 106.04 79.50 53.09 26.50需

 B, TC, 5A) From March;7t103/23. FAGE 17
Figure 29, continued

Figure 30: continued

CETVE\% FISH TUO TEN

$$
\begin{aligned}
& \text { STJ ERY GF EST } \\
& \text { SIGNFICANLE }
\end{aligned}
$$

is
Figure 31: continued SCATtERS TOD TEN FTSH orohass imicle bay
1210.74
1089.68
968.61

847.53
726.45
605.38
494.30
 ■

XII. Trophic resource partitioning among juvenile fishes

Introduction

Estuarine areas provide a nursery ground for juveniles of many spectes of fish. The Apalachicola Estuary is characterized by the dominance of a small number of juvenile fish species: Anchoa mitchilli, Micropogh undulatus, Leiostomus xanthurus, and Cynoscion arenarius (in decreasing order of abundance). Seasonal and long-term fluctuations of these fishes wave been documented (Livingston et al., 1976) and observations are continuing. Generally, seasonal peaks of abundance do not coincide, with the exception of M. undulatus, and L. xanthurus. Anchoa mitchille is usually most abundant in fall-early winter, M. undulatus and \underline{L}. xanthurus peak in winter-spring, and C. arenarius peaks in summer-early fall. Analyses of the seasonal fluctuations of these species indicate that physico-chemical factors (including salintty and temperature) may not be as critical in determining the fishes' distribution as biological characteristics such as feeding and reproduction. The present study was designed to examine the food habits of these four species and to relate their seasonal utilization of the estuary to the seasonal avallability of their food sources. Such aspects as trophic resource partitioning, interspeciefic competition, and tilization of abundant, comercially important macroinvertebrates are the subject of this study.

Materials and Methods
Fishes were collected by monthly trawling in various areas of the Apalachicola estuary (see Livingston et al., 1976, or other portions of this report for description and details of field methods). After field preservation in 10\% fomalin, fishes were mashed and stored in 40% isopropanol until analysis. At such time, fishes were sorted into $10 \pi \mathrm{~m}$ SL size classes (e.g. 10-19man,

20-29mm, etc.). Stomachs of up to 25 individuals (50 individuals in 10-19 class) from each size class were dissected and their pooled contents stored in $\mathbf{4 0 \%}$ isopropanol. Stomach contents were then analyzed concerning percent composition by a gravimetric procedure using a series of 76 m diameter sieves (2000, $850,425,250,150$, and 75μ mesh) as described by Carr and Adams (1972; 1973). Large food items were separated, identified by genus and species when possible, and dried individually. Smaller items were separated into fractions of similar particle size with the sieves. After determining the percent composition of each fraction by subsampling, (enumerating and'qassifying 100-300 particles with a dissecting microscope), each fraction, as well as the larger items, was placed in preweighed aluminum tins and dried overnight at $90-100^{\circ} \mathrm{C}$ in an oven. Samples were then weighed to the nearest 0.1 mg on a microbalance. Percent composition was determined by multiplying the numerical percentage of each food type in a sieve fraction by the dry weight of that fraction, then summing the values of each food type over all fractions.

Data analysis was conducted using various combinations of similarity indices and clustering strategies. For continuous data such as biomass, three similarity coefficients and two clustering strategies were used. The stinflarity coefficients included:

1) complement of the Bray-Curtis measure,

$$
1-\left[\sum_{i=1}^{m}\left|x_{i}-y_{i}\right| / \sum_{i=1}^{m}\left(x_{i}+y_{i}\right)\right]
$$

2) complement of the Canberra metric,

$$
1-\left(\left[\sum_{i=1}^{m}\left|x_{i}-y_{i}\right| /\left(x_{i}+y_{i}\right)\right] / N\right) ;
$$

3) Rho

$$
\sum_{i=1}^{m}\left(P_{x_{i}} P_{y_{i}}\right)^{1 / 2} j
$$

The clustering strategies included the following:

1) group average,

$$
D(I J, k)=\frac{n_{1}}{n_{1}+n_{2}} D(I, k)+\frac{n_{2}}{n_{1}+n_{2}} D(J, k)_{j}
$$

2) flexible grouping,

$$
D(I J, k)=\frac{1-\beta}{2}[D(I, k)+D(J, k)]+\beta D(I ; J)
$$

where $x=$ biomass of i^{*} food item in sample x,
$y=$ biomass of $i^{\text {th }}$ food item in sample y,
$N=$ total number of food items in samples $x+y$,
$P=X_{i} / \sum_{i=1}^{m} X_{i}=$ proportion of biomass of the food item in total biomass
$P=\frac{y_{i} / \sum_{i=1}^{n} y_{i}=\text { proportion of biomass of the food } 1 \text { teri in total biomass }}{\text { of sample } y \text {, }}$
$h_{1}=$ number of samples in cluster 1
$h_{2}=$ number of samples in cluster 2
1, J. $K=$ unit clusters (single entities)
$\mathrm{IJ}=$ fused cluster
$D(A, B)=\begin{aligned} & \text { distance generated by similarity index matrix between samples } \\ & A \text { and } B\end{aligned}$
$\beta=$ clustering intensity coefficient (-1 to 1).

The choice of these similarity indices and clustering strategies were based on discussions of methods in Sneath and Sokal (1973) and Clifford and Stephenson (1975). The rho index is discussed by man Belle and Ahmed (1974).

Results and Discussion

Anchoa mitch 1111

A total of 3,448 A. Mitchilli stomachs were examined, forming 276 station x date x size class (SDS) combinations. Stomach contents are summarized by size class, over all stations, and months in Table 1. Larger, identiflibie organisms are presented in Table 2.

Calanotd copepods, probably Acartia sp., are the major food ttem for A. Mitchilli although dependence upon copepods decreases from 97.8% in the $10-19$ min class to 49.3% in the $60-69 \mathrm{~mm}$ class. The change in diet is minly due to Increased consumption of mysids (up to 17%), insect larvae (up to 12%), and juvenile fishes (up to 6.7\%). Seasonally, copepods are usually the main food item for spting through fall for fishes 49 mm SL. Larger fishes utiflize: cppepods mainly during spring and summer. Mysids become important in the fall and occasionally in the ppring. Winter feeding encompasses a wide variety of organisms, including copepods, insect larvae, cladocerans, barnacle nauplii, and piant matter. Although detrital matter was not found to any extent in Anchoa tomachs ($<2.6 \%$), anchovies do utilize the detrital food web as they switch from copepods to epibenthic and benthic organisms such as mysids and insect larvae.

Micropogon undulatus

A total of 2,215 Micropogon undulatus stomachs were examined, foming 165 SDS combinations. Stomach contents are simmarized by size class, over all stations and months, in Table 3. Larger, identifiable food items are presented in Table 4.

Polychaetes form the basis 66 . undulatus' diet, averaging 34.1% over all size classes examined (10-159mm SL). The main species of polychaetes encountered were Parapripnospio pennata and Glycinde solitaria in outer bay stations, and Amphicteis gunneri in inner bay stations. Other important food itans include detritus ($13.6 \% 0$) shrimp (10.4\%), mainly Ogyrides ilmicola), and juvanile fishes (8.5\%). Across the range of size classes, smaller fishes (10-39min) consumed relatively larger amounts of insect larvae, mid-range fishes ($40-99 \mathrm{~mm}$) consumed relatively morgedetritus, mysids and isopods, while larger fish ($<100 \mathrm{~mm}$) increased intake of juventle fishes, crabs, and infaunal
shrimp. Conmerically important shrimp, Penaeus spp., were weely found, and blue crabs, Callinectes sapidus, were not found at all. Of the fishes eaten, 40% were identified as juvenile Migropogon, indicating some degree of connibalism. 1 alostomus xanthurus

A total of 903 Leiostomus xanthurus stomachs were examined, forment 81 SDS combinations. Stomach contents are summarized by size class, ower all stations, and dates in Table 5. Larger identifiable food items are presented in Table 6.

Generaliy Leiostomus does not depend heavily on one or two main food items, as do the other species examined. Detritus (22.5\%), harpacticoid copepods (18.2\%), polychaetes '(18\%), insect larvae (12.4\%), and bivalves (12\%) are the main food sources. Trends across size classes are not as clear as those determined for othur species. Insect larvae are most important to the middle size classes $(40-69 \mathrm{~mm})$. Detritus and polychaetes are relatively more abundant in fish $70-89 \mathrm{~mm}$, while bivalves become important to the $90-109 \mathrm{~mm}$ individuals. Harpacticoid copepods are quite variable.

Cynoscion arenarius

A total of 1,545 Cynoscion arenarius stomachs were examined, forming 122 SOS combinations. Stomach contents are summarized by size class over all stations and dates in Table 7. Larger identifiable food items are presented in Table 8.

Cynoscion feeds mainly on fishes (62\%) and mysids (25.7\%). Smaller size classes depend heavily upon mysids (73% in the $10-19 \mathrm{~mm}$ class) and to a lesser extent upon calanoid copepods (48\%). There is aclear trend in the reduction of mysids and copepods, and a rapid, concurrent change to juvenile fish as the main food item. Juvenile fish become dominant by the $40-4 \mathrm{~mm}$ class and reach 100% by the $80-89 \mathrm{~mm}$ class. Of the fishes consumed Anctoa
mitchilli represented 78% of those identified. Generally, shrimp, particularly Penaeus spp., and blue crabs which are seasonally very abundant in the bay are not heavily preyed upon.

Preliminary results of cluster analyses

Initial investigations concerning the similarity coefficient clustering strategy to be used for the final data analysis were conducted with the data for Micropogon undulatus as given in Table 3. In a comparison of group averaging vs, flexible grouping ($\beta=-0.25$) and concurrent comparisons of Bray-Curtis vs. Canberra metric vs. rho, group average clustering appeared to form weaker clusters with a higher degree of chaining than did flexible grouping over all similarity coefficients. Of the similarity coefficients, rho appeared to give the most obvious and strongest clusters in terms of interpretable biological information concerning Micropogon size classes. The apparent "best" choices were rho combined with flexible grouping, although further analyses will be conducted.

Secondary investigations considered the choice of β values (clustering intensity coefficient) used in flexible grouping. Four values of B (0.25, $0.00,-0.25,-0.50$) were compared using the Micropogon data, rho, and flexible grouping. Compaction of clusters increased as β increased from -0.25 to 0.25 , while negative values in the similarity matrix occurred with $\beta=-0.50$. Thus, the best perfomance was chosen for $\beta=-0.25$ in flexible grouping, as has been noted by others (Sneath and Sokal, 1973).

The final stage in these preliminary analyses was to use the data in Tables $1,3,5$ and 7 in conjunction with rho and flexible grouping ($\beta=-0.25$) to investigate the dietary similarity of size classes within each species (Figure 1), and to examine station similarities with respect to food avallabllity to each species (Figure 2). Anchoa mitchflif size classes were highly interrelated but seemed to form two distinct clusters; the $10-39 \mathrm{~mm}$ group,
characterized by the largest intake of copepods, and the $\mathbf{4 0 - 6 9 m m}$ group, characterized by decreased consumption of copepods and increased consumption of larger food items such as mysids and juvenile fish. Micropogon undulatus size classes also formed two clusters: an intense cluster of $10-69 \mathrm{~mm}$ fish. whose diet included $>50 \%$ polychaetes, detritus, and insect larvae, and a loose cluster of $70-159 \mathrm{~mm}$ fish, whose diet was composed of polychaetes, shrimp, crabs, or fish, usually with one of these items predominating. These two clusters were only weakly linked. Leiostomus xanthurus size classes formed three clusters: a relatively intense cluster of $\mathbf{2 0 - 6 9 m m}$ fish, whose diet was composed of insect larvae, polychaetes, harpacticold copepods, and detritus; a more intense cluster of $70-99 \mathrm{~mm}$ fish, whose diet was mainly detritus, harpacticoid copepods, and polychaetes; and a unit cluster of 100109mm fish, whose main dietary item was bivalves. The first two clusters were relatively closely related, while the third was only loosely associated with the others. Cynoscion arenarius formed two main clusters which were distantly related: the $10-49 \mathrm{~mm}$ fish appeared to be a loose grouping of two intense clusters, the $10-29 \mathrm{~mm}$ class, consuming mainly mysids, and the $30-49 \mathrm{~mm}$ class, consuming a mixture of mysids and fish. The second main cluster was $50-89 \mathrm{~mm}$ fish, whose main food item was juvenile fish. The results of the cluster analysis thus appear to agree with the biological results.

Cluster analysis by station for each species (Figure 2) indicated the variety of food found in various areas in the bay. Water column feedere such as Anchoa mitchilli do not seem to have different food habits with respect to location, since all stations appear to be relatively tightly clustered, It was expected that Cynoscion arenarius, also a water-colum feeder, would behave similarly, but two loosely related station clusters appeared. However, when the original data were scanned, it was noted that cynoscion consistently consumed more fish at stations $5,7 \mathrm{~A}, 1 \mathrm{~B}$, and 1 C than at stations

2,6,1,4,5A, and 3. Distinct station-to-station differences were noted for the bottom-feeding Micropogon undulatus and Leiostomus xanthurus. Micropogon clusters into three groups, stations $3-5-5 A-6,1-4-1 A-1 C$, and 2-1B. Leiostomus clusters into two groups, stations 3-5-5A-6 and 1A-1B-1-4-2-1C. The distinctions in these cases probably are related to station characteristics. Thus, the cluster of stations 3-5-5A-6, occurring for both species are characterized as shallow, low salinity areas with nearby beds of benthic macrophytes, while the other stations are relatively remote from land and have, in general, higher salinities and muddy bottoms with little or no macrophyte deve lopment.

Resource Partitioning and Competition

The general evidence presented above indicates that the various resources of Apalachicola Bay are well partitioned among the fish species. The most commonly examined resource dimensions are habitat, food, and time. In this case, habitat has not yet been examined in detail. Temporal partitioning has already been documented, with the four main species generally occurring in peak abundances during different seasons, the exception being Micropogon and Lejostomus (Livingston et al., 1976). Food resources appear also to be well divided among the species: Cynoscion feeds on mysids and juvenile fishes, Anchoa on calanoid copepods, and polychaetes. The obvious competitive interactions would, on a temporal basis, appear to be between Micropogon and Leiostomus. However, competition is ameliorated between these two benthic feeders via differentiated food habits as demonstrated above.

Future analyses

A number of important aspects have yet to be considered. These include: 1) the extent to which spatial and temporal differences in food availability affect the observed variability in food habits of each species, 2) the extent
of competition among the species when smaller size classes co-occur (this may have been obscured by the preliminary examination of average food consumption per size class), 3) the relationship between the temporal occurrence of each species and the abundance pattems of the prey organisms (data collected by other investigators but not yet available for analysis), 4) possible habitat partitioning by these fish species, particularly Leiostomus and Micropogon, and 5) possible reasons for the apparent exclusion of commercially important invertebrates from the diets of the four fish studied. These aspects will be considered in future work. In addition, further analysis will include a multivariate treatment of the potential interactions of key forcing functions such as river flow with some of the trophic relationships detailed above. It appears that detritivorous groups have well timed migrations into the bay which could be associated with river-borne influxes of detritus during certain times of the year.

Literature Cited
Carr, W.E.S, and C.A. Adams. 1972. Food habits of Juvenile marine fishes: evidence of the cleaning habit in the leatherjacket, olligoplites saurus, and the spottail pinfish, Diplodus holbrooki. Fishery Bull. 70(4): 1111-1120.
and \qquad . 1973. Food habits of juvenile marine fishes occupying seagrass beds in the estuarine zone near Crystal River, Florida. Trans. Amer. Fish. Soc. 102(3): 511-540.

Clifford, H.T. and W. Stephenson. 1975. An introduction to numerical classifitation. Academic Press, New York. 229p. Livingston, R.J., G.J. Kobylinski, F.G. Lewis, III, and P.F. Sheridan. 1976. Long-term fluctuations of epibenthic fish and invertebrate populations in Apalachicola Bay, Florida. Fishery Bull. 74(2): 311-322.

Sneath, P.H.A. and R.R. Soka1. 1973. Numerical taxonomy. W.H. Freeman and Co., San Francisco. 573p.

Van Belle, G. and I. Ahmad. 1974. Measuring affinity of distributions. in Proschan, F. and R.J. Serfling (eds.), Reliability and Biometry: Statistical Analysis of Lifelength. S.I.A.M., Philadelphia. pp. 651668.
20-29

9
0
0
8
size
$60-69$
-

$\stackrel{\rightharpoonup}{v}$

onv N~
ry weight) of

Table 2. Identified food items in stomachs of Anchoa mitchilli(276 sets of samples)
AMPHIPODS (20/276 occurrences) \# of \# of occurrences Gammarus sp. $1 \quad 3$
Grandidierella bonnieroides 3
Cerapus sp. 2
Corophium louisianum 1
MYSIDS (52/276) occurrences Fish (4/276)
Mysidopis bahia 18
Mysidopsis bigelowi 3
Mys Tdopsis almyra 3
Taphromysis bowmani
Anchoa mitchilli 1
Cynoscion Arenarius 1
Syngnathus sp. 1 2
 ∞
\cdots
\cdots $\because \quad-\quad \infty \quad \infty$ $\stackrel{N}{\boldsymbol{N}}$
Micropogon undulatus, summed by size class.

 Size (mm)

9
0
0
0
0

8

N
$\underset{\sim}{2}$

$\stackrel{\mp}{ \pm}$
40.1

NN
$\dot{O} N$
m

110-119
Table 4: Identified food items in stomachs of Micropogon undulatus (165 sets of samples)
(127/165 $\frac{\text { Polychaetes }}{\text { total occu }}$
(127/165 total occurrences)

Table 4: continued.
Avg. 20-109

Size (mm)

Table 5.

Size
Food Item
Sand grains
Sediment masses
Detritus
Plant renains
Rhychocoels
Mematodes
Polychaetes
Givalve siphons
Bivalves
Cladocerans
Ostracodis

Harpacticoid copepods Cumaceans
Isopods
Mysids
Crabs - zoeal

- megalopal
Insects - larva1
Invertebrate eggs
Fish eggs

Amphipods (30/81 occ.)	\# of occurrences
Ganmarus sp. 1	7
Melita sp.	3
Grandidierella bonnieroides	3
HaustoriTd sp.	2
Cerapus sp.	2
Corophium louisianum	1

Table 6: Identified food items in stomachs

3
3
1
4
3
1

$\begin{aligned} & \mathbf{o} \\ & \hline \mathbf{1} \\ & \hline \mathbf{\infty} \end{aligned}$	

70-79

$\stackrel{\bullet}{0}$
$\frac{0}{6}$

30-39
 $\stackrel{?}{0} \dot{\sim}$

9
0
0
5
9
9

$\stackrel{9}{\infty}$
Iry weight) of
Stomach contents (\% of total dr
Table 7:

Table 8: Identified food items

n stomachs of
Postlarval
(19/122 occ.)
Cynoscion

$$
\begin{aligned}
& \text { arenarius } \\
& \text { \# of } \\
& \text { occurrences } \\
& 5 \\
& 1
\end{aligned}
$$

Zoeal (13/122 occ.)
Rhithropanopeus $\frac{\text { harrisii }}{5}$
Callinectes sapidus 5
(122

$$
\begin{aligned}
& \text { sets of samples) } \\
& \text { Fish } \\
& \text { (797122 occurrences) } \\
& \text { Anchoa mitchilli } \\
& \text { Cynoscion arenarius } \\
& \text { Micropogon } \frac{\text { undulatus }}{\text { Microgobius }} \text { sp. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { \# of } \\
\text { occurrences }
\end{array} \\
& \hline 25 \\
& 5 \\
& 1 \\
& 1
\end{aligned}
$$

It is appropriate that objective scientific Information should form the basis of planning and management criteria in environmental matters. The data generated in this Sea Grant Project have been applied in various ways to promote constructive interactions among local fishermen, upland developmental interasts; elected officials, state and federal agencies, and professional planners. This effort has been documented in a series of papers (Livingston, 1975, 1976, 1977; Livingston et al., 1974; Livingston and Joyce, 1977).

1. In response to the Franklin County Board of Commissioners and commercial fishing interests in the area, a project was initiated to determine the impact on the bay of upland clearcutting and draining practices in Tate's Hell Swamp. The combined field and laboratory program, supported by the Board of Franklin County Commissioners, the Buckeye Cellulose Corporation, and the Florida Department of Environmental Regulation, includes day/night fièld collections of infauna and epifauna, physico-chemical monitoring, and field experiments in areas of interest. This has developed into a full Sea Grant project which is a joint effort by Florida Sea Grant investigators, federal, state, and county agencies, and private pulp mill interests. The primary aim is to determine the feasibility of management practices for upland runoff due to clear-utting practices.
2. During the past year, project personnel have continued to work with the Florida Department of Natural Resources with regard to the purchase of sensitive wetlands areas of the lower Apalachicola River as
part of the state's Environmentally Endangered Lands Plan. A total of more than 28,000 acres at a cost exceeding 8 million dollars has now been purchased. This purchase was defined and qualified by scientific data generated by the Apalachicola Sea Grant project. Further involvement of this project in the proposed management of such lands is anticipated. In addition, baseline data generated by this Sea Grant Project have been used in decisions by state officials to buy portions of St. George Island and Little St. George Island, an investment exceeding $\$ 10$ million. Thus; sensitive portions of the Apalachicola Drainage System have been identified and appropriate steps toward preservation of such areas have been taken.
3. Baseline data from the Sea Grant project have also been used to generate interest in the development of a basin-wide management plan through the coordinated action of a number of state and federal agencies, county commissions, and private interests in the Apalachicola Valley. The principal investigator, together with the Florida Department of Natural Resources, has generated a published compendium of knowledge (Livingston and Joyce, 1977) conceming scientific, economic, legal, and managerial considerations in the Apalachicola Drainage System. This includes papers written by 28 experts in various fields and is now serving as a multi-disciplinary base of information to be used in future planning and management decisions. This has provided the impetus for various related activities, and is viewed as an important step in promoting an objective translation of scientific data for use in planned development.
4. The principal investigator has served as an advisor to the Franklin County Board of Commissioners with regard to zoning regulations, local planning programs for St. George Island, water hyacinth control in
the lower Apalachicola Drainage, and the development of efficient decision-making processes at the local level. Through a series of lectures and briefings, this project has contributed scientific input to the Florida Division of State Planning with respect to the development and coordination of a resource management and planning program for the entire Apalachicola Drainage System. Close contacts have been maintained with various local groups and elected county officials. High school and university students have been taken out on our boats and trained as marine biologists in a continuing effort to operate on a grass roots level. The principal investigator has periodically written a column in the local newspaper, translating scientific facts about the bay into everyday language. Consequently, decisions have been made at the local level which have opened the way for the developpent of constructive planning programs throughout the area.
5. There has been close coordination of this Sea Grant project with researchers of the Fish and Wildife Service in their ongoing and proposed studies of the Apalachicola wetlands. Data from the Sea Grant project has been used to initiate preliminary efforts of the Environmental Protection Agency and the National Aeronautics and Space Administration to develop remote sensing as a management tool in this area. Information has also been used by the Florida Department of Environmental Regulation and the U.S. Army Corps of Engineers in their activities in the Apalachicola Drainage System. Data from the Apalachicola Sea Grant project provided the impetus for the possible designation of the Apalachicola Bay System as a Nat onal Estuarine Sanctuary in the Gulf of Mexico under the Coastal Zone Management Act of 1972. This represents, if successful, the direct application of Sea Grant research data to the implementation of coastal zone management on a national scale. Pursuant to this activity,

The Conservation Foundation of Washington, D.C. has initiated a series of meetings among local, state, and federal agencies to develop an organized setting for coordinated research and management processes in the Apalachicola Valley. In short, the Apalachicola Bay Sea Grant research is now serving as a nucleus for what could eventually become a national model for the integration of research and planning techniques in important natural drainage systems.

Literature Cited

Livingston, R.J. 1975. Resource management and estuarine function with application to the Apalachicola Drainage System. Estuarine Pollution Control and Assessment, Proceedings of a Conference, Vol. 1 (U.S. Environmental Protection Agency), pp. 3-17.

Livingston, R.J. 1976. Environmental considerations and the management of barrier islands: St. George Island and the Apalachicola Bay System. In. Barrier Is lands and Beaches. (O.C.Z.M., Nat. Ocean. Atmos. Ad. - The Conservation Foundation, Wash. D.C.), pp. 86-102. Livingston, R.J. 1977. (in press). Application of scientific data for wetsland management: the Apalachicola System. National Wetland Protection Symposium (Environmental Law Institute, Fish and Wildife Service).
Livingston, R.J. and E.A. Joyce, Jr. Eds. 1977 (in press). Proceedings of the Conference on the Apalachicola Drainage System. Flor. Mar. Res. Publ.

Livingston, R.J., R.L. Iverson, R.H. Estabrook, V.E. Keys, and J. Taylor, Jr. 1974. Major features of the Apalachicola Bay System: Physiography, Biota, and Resource Management. Florida Scf. 37(4): 245-271.

United States Department of the Interior
 FISH AND WILDLIFE SERVICE
 17 ExECuTIVE PARK DAIVE, N. E.
 ATLANTA, OEORGHA 30329

Septeniar 10, 1975

- Dr. Robert J. Livingaton

Dept. of Biological Sciences
Florida State Universtiy
Tallahassee, Florida 32306
Dear Dr. Livingston:
I sincerely enfoyed our telephone conversation of this date, and appreciate your enthusiastic response to possibilities for cooperative offorts in fishery work which we might initiate in the Apalachicola liver Syotem in the future.

As a result of phasing out our study of striped bass stocking in the Choctawhatchee River System, Florida, we-have potential to divert linited effort to fishery studies in the Apalachicola. Our inmadiate interent is in formulating a project proposal which addresses the broadet popsible range of interests and improves our efficiency in generatiag that data which is most meaningful to the resources. As mentiomed, tive Saptomber 18, 1975 Meeting with representatives from several State afpociae is toward this end. We regret very much that other comuitments preclude ropry meeting with us, however, you may rest asaured that we will be vistiting you in the near future for your input prior to finalizing our proponel.

It is our firm intent to coordinate and interact with you and your work under the Sea Grant Program to the fullest possible degree in any study effort which we contemplate in the Apalachicola River. Your concurrepce in such interaction and cooperation toward avoiding duplication and meximizing the returns for the efforts expended is solicited.

I wish to thank you for the information which you provided in our brief discussion. I will look forward to meeting with you parsomily at ame future date to discuss the River and your work in the hay in more detail.

Sincerely,

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
 WASHINGTON, D.C. 20460

Br. Rotwert J. Livingston Florida State University Departaent of Biological Science Tallahassec, Florida 32306

Dear Dr. Livingston:
The Office of Monitoring and Technical Support (Environmental Protection Agency (EPA) Headquarters), 'the EPA Region IV, and the Envirominental Monitoring and Support Laboratory, Las Vegas (BH_{H} L-LV) wish to thank you for your highly valuable assistance in the collection of ground truth data during the recent remote sensing (satellite and aircraft) effort with National Aoronautics and Space Administration over the Apalachicola Bay area.

Such joint efforts, that combine the actual needs of the user ecomulity with the prospective agencies, produce the encouraging eqrimomental goals that we so gravely need. The work that you holped us complete will hopefully serve as a milestone in ; my future efforts to monitor envizonmental stress in our coastal zone around the Nation. Once the final report is completed, two copies will be sent to you.

We ere looking forward to receiving your helicopter photographs, as woll as the vital water quality ground truth, background date reports and oyster bed maps. I hope to visit with you personally during my next visit to the area. Thank you again for your cooperation.

$$
\begin{aligned}
& \text { Sincerely yours, } \\
& \text { John Koutsandreas, Senior Advisor } \\
& \text { AdvancedMonitoring Program } \\
& \text { Monitoring Technology Division } \\
& \text { Office of Monitoring and Technical Support (RD-680 }
\end{aligned}
$$

ce: John M. Hill (RD680)
Dr. Harvey Melfi (EMSELV)

DEPARTMENT OF THE ARMY
wolle olstalct. cofirs of matment
P. O. B0X 2218
modile, alamina 3te20
meply 70 ATTMNTIONOFI

SAPD-N
34 xis: 1976

Dr. Robert J. Livingston
Florida State University
Tallahasaee, Florida 32306

Dear Dr. Livingston:
I have recently received a copy of comments attributed to yom in a 26 April 1976 edition of the Herald Tribune ragarding dovelepment on the Apalachicola River.

I note from your statements that you do not totally oppose use of the Apalachicola River for navigation purposes, but oupport a miltiple use plan which would permit such use in conjunction with preserving fundamental environmental values. In this reapact your views are not basically different from the objectiven of the coxpe of Enginears' planaing efforts.

As you are aware, the Corps of Engineers has been directed by Conpress to investigate alternatives that will better maintain the authorimed 9 -foot navigation channel on the Apalachicola River. While our exudy directive is to investigate improvenents for navigation, the Corps: of Engineers' planning criteria use a framework establiahed in the Water Resources Council's. "Principles and Standards for Plaming Vater and Related Land Resources," which requires the systematic proparation and evaluation of alternative solutions that will maxiaze contributions to the two national planning objectives of "Environmental quality" (BQ) and "National Econumic Development" (NED). The process also requifres that the impacts of proposed actions be evaluated and massured to the fullest extent possible. Within this planning concept we axe not only unconstrained, but charged to develop multiple use plang for water rasource developments that achieve the best ovarall balamé in comerri* butions to both EQ and NED.

Our stui; on the Apalachicola River has been inactive for the past yatr due to lack of funds; however, it is scheduled to be actively rammed in the forthcoming fiscal year. In an endeavor to achieve a better understanding of the planning objectives, we are proposfag a serter of
informal workehop meatings with agencies and affected interests phowledgeable of both economic and environmental needs of the area. Through this effort we would hope to develop an overall plan to meet navigation and other needs while also utilizing the economic and enviromental values of the river. In thisi endeavor we would appreciate any suggestions you may have regarding our approach at this time and solicit your participation in our forthcoming meetings. We will advise you further of our proposed meetings when we heve tikmed up a schedule.

If you desire further information regarding our study plans, please contact Mri. Waiter Burdin of my staff at telephone (205) 690-2772.

Sincerely youra;

State of Florida

DEPARTMENT OF NATURAL RESOURCES

mill P. ANHLER
\qquad DOYLS CONN:

Dr. Robert J. Livingston Associate Professor Department of Biological Sciences Conradi Building Florida State University Tallahassee, Florida 32306

Dear Dr. Livingston:
As you know, the State of Florida recently authorized the acquisition of 12,869 additional acres within the Lower Apalachicola River endangered lands project. This brings the total acquired so far to more than 28,000 acres, or better than 90% of the proposed acquisition.

The scientific knowledge generated through your on-going studies, and your generous sharing of that information with us, has enabled the state to define an optimum purchase boundary which will reap public dividends far in excess of the 8 million dollars we have so far invested in the Libwer Apalachicola land purchase. We would hope that your work will continue so that we might even further sharpen our focus on the most critical envirommental needs of this estuarine complex.

Now that our initial land purchase in the Lower Apalachicola is nearly completed, we are working towards finalizing a management plan for the area. Enclosed you will find a draft management concept outlining the essential elements of that management plan. In view of your long-standing interest and involvement with this state acquisition, we would invite your commente and criticisms on the draft.

Once again, may I express our deepest appreciation for your invaluable assistance to the State of Florida over the more than

Dr. Bobert J. Livingston

Page Two

December 28, 1976
three years in which the Lower Apalachicola purchase has been developed. We look forward to your further advice on the matter of its future management.

Sincerely,
COM ROM
James W. Pearce, Chief
Bureau of Plans, Programs, and Services
Division of Recreation and Parks
JWP/am
Enclosure

4

Tins yffites
 3. Milichuel Uruter. Xisequr

(CRAWFOMOVILLE OFFICE) COURTHOUSE SQUARE P. O. BOX 568

June 11, 1976 CRAWFOPDVILLE. FLORIDA 32327

(TALCAHAESEE OFFICE) 03s mant lapaykiti striest TALLAHAstete. Hontoa 3esol (304) 470-kies

Dr. Robert J. Livingston
Biology Department
Florida State University
Conradi Building
Tallahassee, Florida 32313
Subject: Optisist Program
Dear Dr. Livingston:
The response from your presentation of the Blue Crab habits and ecological effects if the Apalachicola River is altered by Alabima and Georgia interest was tremendous. I feel sure Ray Wheeler, Program Chairman for the Wakulla Chamber of Conmerce, will contact you for a presentation before that association, fince the survival of the blue crab directly affects 278 of the work force in the county.

I look forward to receiving the advance copy of your group's study, the past and future newspaper articles, and further communcation in.-this respect.

Enclosed is a copy of the Blue Crab Festival program similar to that which we will use this year and any article explaining your research will be appreciated and well distributed.

Please stop by to see me if you are in Crawfordville and again, thank you in behalf of the Optimist club.

JMC/hmt

cc: Mr. Bob Morgan, Optimist President
Mr. John Burke, Program Chairman
Mr. Walter Dodson, Wakulla Chamber of Commerce President Wakulla News
Mr. Ray Wheeler, Wakulla Chamber of Comaerce Program Chairman

Tlumpsun, Gillelant \& Uarter, \{id.

December 13, 1976

Dr. R. J. Livingston Bradfordville Road Tallahassee, Florida

Dear Dr. Livingston:
Our 200 al Rotary Club is very interested in the proposed dam site that would be located at Blountstow, Florida. We have heard many pointy that lean towards having the dan. I have read in the paper many times of your concern over the propects of having anothiar dan on the Apalachicola River.

I would like to bear your comments and many of our members would also; We plan on having two programs on this subject and would appreciate your being part of this series. Would you please see if you could meet with OAF Club on January 17 or January 243 These dates are Monday. We have a lumohon meeting at 1:00 PM at the Gate Restaurant here in Chattahoochee. We would like you to present us with a 30 minute program if you could.
Would you inform ne if you could meet with us on Monday, Jamary 173

Chat tahoochee Rotary Club
Chattahoochee, Florida
Hame

Nomen. James, Nrupresident

Florida Game and Fresh Water Fish Commission

Decenber . 20, 1976

Dr. Robert J. Livingston Florida State University Department of Biological Science Tallahassee, Florida 32306

Dear Dr. Livingston:
I received your letter of December 17, 1976, concerning the hyacinth problem in Apalachicola Bay.

We are of the opinion that our spring spraying of the creeks is not a loss of breeding habitat. I have tried to make clear that hyacinths are detrimental in these areas and we want to maintain them, both to insure quality habitat and quality recreation-potential.

I have come to regard the marsh area as too complex a system for us to infringe upon and believe if we concentrate our efforts on the area above the marsh we can accomplish the desired objectives. I belfeve I showed you enough information on the herbicide 2,4-D to adequately demonstrate that our use on hyacinths upstream would have no direct effect on invertebrates in the marsh. This is why 1 believe we could have a program in these upstream creeks in September and October. I would like your opfinion on this point.

The County Cormission felt obligated to speak for the fishermen when they requested we not spray the creeks in the spring. I afm asking they reconsider whether the fishermen wish us to cease our program. We cannot spray in February before the fishing season as they suggested.

Dr. R.J. Living eton / Jerry Krumarich
Decameter 20, 1976

Page 2

As for a specific program, we would like to spray as needed any of the creeks along the Jackson River from Lake Wimico to the Apalachicola River. Other upland creeks which would need very little "touch up" maintenance spraying are Upper Chifley Creek, Big St. Mark's (above tressel), East River and East River Cutoff (above tressel). As I stated in last year's proposal we can accomplish our objectives and never spray on the marsh side of the railroad tressel.

We feel that keeping the hyacinths under control at these times will keep dow the rafts of hyacinths in the marsh and bay in the summer.
we world like to spray these creeks described above in February, March and April and in September and October. Our spray schedule would probably be only two days mar week and we could work this out more definitely If you felt it necessary. We do usually try to not spray when the fish are boding ant mould certainly feel proud if we could satisfy ourselves that we put the hyacinths on maintenance in some creeks before April. but as you are well aware, it takes time to work on this problem.

Last year you seamed satisfied that our operations and 2,4-D were not directly harmful to the commercial fishery and that restricting our efforts to help sport fishermen, if unwarranted, was not necessary. However, the Franklin County Commission was never convinced of this. If we are going to spray at all we will want to intelligently strive to be affective, as outlined by creeks and seasons. If we are going to spray i med ta coordinate with you and the County commission and plan now, otherwise our spray operation will be less effective. If we are not going to spray at all, it would be best to determine that at this time also.

I took forward to your reply and to working together on this meter.

Sincerely,

Jerry T. Krumurich
Regional Aquatic Botanist

JTK/bsp
cc: Franklin County Commission Clayton Phillippy

frirankitin County

APALACHICOLA FLORIDA 32820

ROBERT L. HOWELL
December 22, 1976

Florida Game and Fresh Water
Fish Commission
P. O. Box 128

DeFuniak Springs, Florida 32433
Attention: Jerry T. Krummrich Regional Aquatic Botanist

Dear Mr. Krummich:
I presented your letter o $\mathcal{Z} 13$ December 1976 to the Board of County Commissioners pertaining to the spraying of hyacinths in the creeks along Jackson River. I also presented your copy of a letter to Dr. Robert J. Livingston dated 20 December 1976 pertaining to the same subject.

It is the desire of the Board of County Commissioners that you spray and control the hyacinths in the area as stated in your letter of 13 December but would you work out the schedule with Dr. Livingston. Any schedule he works out will be satisfactory to the Board of County Commissioners.

Sincerely,

RLH:mmj
cc: Dr. Robert J, Livingston

 Division of State Planning
000 Apalechat Porkwoy - IEM Bulding
Meubla OD. Aekew envitume

RG Whittie, JI suafe manuo prectice

Tallafassee

32304

(904) 488-4925

January 12, 1977

Lt. Gov. J. H. -Jign" Whlliame

Dr: Pobert J. Livingston Department of Elological Sciences Florida State University Tallahassee, Florida 32306

Deax skip:
I want to confirm the briefing we discussed during our telepione conversation of January 11. I would like you to brief the Director, Assistant Director and Bureau Chiefs of the Division of State Planning on the status of your research in the Apalachicola River basin. We Will meet on Friday, January 2l, at 10:00 A. M. in our third floor conference room.

I also want to tell you how much I enjoyed your presentation to the Conservation Foundation in Washington, D.C. last week. Your regetrch and your hard earned contacts in the basin should prove invaluable to our Apalachicola River and Bay Resource Management and Planning Program. Hopefully, you will continue to work with us to protect these valuable resources and to assist the people of the basin to meet their own socio-economic needs.

Chief, Bureau of Land and Water Management

Bppartmpnt of Administration Division of State Planning

000 Apaches Parkway - IBM CB Bulking
Tambatassee
32304
Le, Gov. J. H. "Jim" Williams number em moludtriartem
(904) 488-4925

February 1, 1977

Dr. Robert J. Livingston
Department of Biological Sciences
Florida State University
Tallahassee, Florida 32306
Dear Skip:
I want to confirm your rescheduled briefing to the Division of State Planning on the Apalachicola River basin. the new meeting is now set for Wednesday, February 2, 1977; at 9 am. in our third floor conference room.

Eastern W. Tin, Chief, Bureau of Land and Water Management

EWT/SF/ kb
White

$$
\begin{aligned}
& \text { Randy Whit } \\
& \text { Director }
\end{aligned}
$$

(-pparimpat of Adminiatratian Division of State Planning

Frubin O'D. Ablitew 40vineme.

RGE Whittle, Jr. Bixi mumme omector

Lt. Gov. J. H. -JImThiliam mectise of apothistration

Dr. Gib DeBusk
Chairman
Department of Biological Sciences
212 Conradi Building
The Florida State University
Tallahassee, Florida 32306
Dear Lr. DeBusk:
I have invited Dr. Robert J. Livingston of your department to meet with representatives of each of the bureaus of the Division of state Planning in a division-wide meeting on Friday, January 21 at 10:00 a.m. The Division of State planning is going to be coordinating a Resource Management and Planning Program for the Apalachicola River and Bay and we feel that Dr. Livingston's attendance at this meeting is of crucial importance.

RGWjr/EL/ $/$ cia
!
bo: Dr. Robert J. Livingston

COUSN OD. ASKNW Oemernan
CHUCE A. SMATIERS Eometimy of state
WHEDETH L. SITHVIN
Atherany Gencral
ceralo A. Lewis
comptroliver
MITLP F. ASHILER Prequaret
DOYLE CONNER
Commintinnor of Apriculture malmi D. TURCRNGTON cemmantoner of Palucation

September 11, 1975

Dr. Robert J. Livingston
Biology Department
Conradi Building
Florida State University
Tallahassee, Florida 32306

Dear Skip:
As one of my first duties as newly appointed Research Coordinator for the Bureau of Coastal Zone Planning, I am happy to acknowledge receipt of a copy of the compilation of the results of your field and laboratory studies (Sea Grant Project \#R/EM-1). The delay in response reflects the lack of an encumbent in my position; Bruce judged it best that the new Coordinator restore our close relations. It will certainly be my pleasure to resume and maintain a close working relationship, for your efforts have been the best representation of the letter and spirit of the Sea Grant Program.
Hope to see you soon.

TS/ses
cC: Bruce Johnson

Aromotranticter

2Crited States Senate

October 5, 1976

Dr. Robert J. Livingston Department of Biological Science Florida State University Tallahassee, Florida 32306

Dear. Dr. Livingeton:
Just a note to let you know I appreciate your sending me a copy of the transcript of the Conference on the Apalachicola Drainage System from earlier this year. I hope to have the opportunity to read the study in its entirety and will certainly give this research thorough consideration in my future dealings with planners from the Army Corps of Engineers.

Once again, your thoughtfulness is most appreciated.

$L C / \stackrel{+}{\mathrm{d}} \mathrm{r} / \mathrm{SF} 4 \mathrm{e}-3 / \mathrm{H}$

DEPARTMENT OF NATURAL RESOURCES

CROWN BUILDING / 202 BLOUNT STREET / TALLAHASSEE 32304

December 15, 1976

Dr. Robert J. Livingston
Associate Professor
Department of Biological Science
Florida State University
Tellahassee, Florida 32306
Dear Skip:
Thanks very much for your letter of November 30, 1976 offering your services for aiding in designating Apalachicola Bay and environs as an estuarine sanctuary. We very much appreciate your offer and we never take significant action involving this area without consulting with you.
Pursuant thereto, please find enclosed a lst draft of a preliminary preapplication to OCZM for such a sanctuary. Your comments or advice are solicited. We are expecting Bob Kifer from OCZM down, here shortly and if convenient, would"Iike to have you with us when we meet on this subject. We will keep you advised.

BYute Johnson, Chief Bureau of Coastal zone Planning

BJ/rh
enclosure
ce: Harry McGinnis

State of Florida

DEPARTMENT OF NATURAL RESOURCES

HHLIP F. ASHLER Tramerarer DOYLE CONNER

HARMON W, SHIELDS
Executive Díector

CROWN BUILDING / 202 BLOUNT STREET / TALLAHASSEE 32304
January 28, 1977

Dr. Robert J. Livingston Department of Biological Science Florida State University Room 213, Conradi Building Tallahassee, Florida 32601

Dear Skip:
On February 3 and 4, Dr. Robert Kifer and Mr. Richard Gardner, of NOAA will be in Tallahassee to discuss the proposal for the designation of the Apalachicola River-Bay System as a Louisianian National Estuarine Saictuary.

We wish to thank you for your offer to serve as tour guide and especially for providing a boat for a field trip of the River and Bay system on Thursday afternoon, February 3. Also, we would like to request that you serve as our tour guide for an aerial field trip of the area on Friday morning, February 4, from 8 a.m. until 12 noon if this is convenient to your schedule.

Many thanks again for your help in this matter.
With best regards,

$\mathrm{BJ} / \mathrm{hmg}$
Attachment

cc: Charles M. Sanders Charles Futch David R. Worley Harry McGinnis

1717 Massachuse:ts Avonue, N.W. Washington. $D C .20030$ Telephone (202)797-4300 Cable CONSERVIT
December 20, 1976

Mr. Robert Knecht, Administrator Office of Coastal Zone Management National Oceanic and Atmospheric Administration 3300 Whitehaven Street, N.W. Washington, D.C. 20235

Dear Bob:

On behalf of the Conservation Foundation, I am inviting you to a one-day forum on the national stake in the resources of the Apalachicola River Basin, in the parhandle area of North Florida. We wi.l.l be meeting January 7, beginning at 9:30 a.m. at the Foundation. Lunch and a short cocktail period at the end of the day will break up the working agenda. I hope you can join a small group of local, state and Federal officials interested in research and management priorities for this valuable ecosystem.

Both state and federal governments have impartant land holdings in this area. The ecosystem is intact and contributes to the livolihood of local oysterman and growing agricultural operations. Industrialization and recreational development have, yet to exert strong pressure in the area, though St. George's Island, a barrier island at the mouth of the estuary has been the subject of disputes over second home development.

The recent decision by the Florida Governor and Cabinet opposing the cross-Florida barge canal project suggeots a reexamination of the longer term agenda for the Apalachicola The state is also making efforts to implement coastal management objectives with a new state task force. The ecosysten's complex relationships between fresh and salt waters afford an opportunity to address both values. Ine Apalachicola will be an early priority for significant managenent decisions.

The opportunity for setting a coordinated research and management agenda exists now. This meeting botweon state, federal and local interescs can take place berore confrontation has made dialogue and some meacure of consensus
page 2
inpossible. I look forward to discussing possible goals and directions informally at this early stage in the area's growth process.

Please let us know whether or not you plan to join us on the seventh by calling Laura o'Sullivan at (202) 7974362 .

With best wishes for the holiday season,

Sincerely,

William K. Reilly president

Encl.

APALACHICOLA MEETING

January 7, 1976
CF Conference Room

Preliminary Agenda

9:30 AM

```
State and Local Needs and Priorities
- Overview and Slide presentation on
Ecosystem -- Robert J. Livingston
- Franklin County
- Apalachicola River Basin
    -- Regional Interest
    -- State Perspective
```


4:15 PM Cocktails

John Clark Convenor
'It. Col. John Hill
Office of the Chief of Engineers Department of the Army
Forrestal Building Room 4G065
$693-7093$
1000 Independence Avenue
Washington, D.C. 20314

Dr. Allan Kirsch, Chief
Office of Biological Services
Fish and Wildlife Service
Department of the Interior
Washington', D.C. 20240

Vance Hughes
Environmental Protection Agency
401 M Street, S.W.
Room 737, East Tower WH551
Washington, D.C. 20460

Robert Knécht, Administrator
Office of Coastal Zone Management

$$
343-8095
$$

oK Chapman

National Oceanic and Atmospheric
Administration
3300 Whitehaven Street, N.W.

$$
426-2704
$$

Washington, D.C. 20235

Richard Krimm
Assistant Administrator for Flood Insurance ok Tim Maynsalt Federal Insurance Administration
451 Seventh Street, S.W.
755-5581
Room 5266
Washington, D.C. 20410

Jay Lenders
Secretary, Department of Environmental Regulation
2562 Executive Center Circle East
Tallahassee, Florida 32301
Victoria Tschinkel Asst. to Sec.

904 488-4807

B/Gen. Kenneth E. MacIntyre
Division Engineer
Anise late +5
Corps of Engineers
510 Title Building
30 Pryor Street, S.W.
Atlanta, Georgia 30303

$$
404-221-6711
$$

INVITEES - APALACHICOLA MEETING

F. Leroy Bond
Associate Deputy ChiefU.S. Forest ServiceDepartment of Agriculture
South Building
12th and Independence Avenue, S.W.
Washington, DC. 20250
Mr. William Butcher
Director
Office of Water Research and TechnologyDepartmentof the InteriorWashington, D.C. 20240

$$
343-5975
$$

Robert Eastman

Chief, Division of Resource Area Studies Bureau of Outdoor Recreation Department of the Interior

Richard Gardner
Deputy Assistant Administrator Office of Coastal Zone Management

Administration
3300 Whitehaven Street, N.W.
Washington, D.C. 20235

Lynn A. Greenwalt
Directo
U.S. Fish and Wildlife Service

Department of the Interior
Washington, D.C. 20240

Director, Office of Federal Activities
Environmental protection Agency
401 M Street, S.W.
Washington, D.C. 20460

William McCartney
Executive Director
Northwest Florida Water Management District 325 John Knox Road
Tallahassee, Florida 32303

Dr. Ralph J. McCracken
$\begin{array}{ll}\text { Associate Administrator } \\ \text { Agricultural Research Service } & 447-3658\end{array}$
U.S. Department of Agriculture

Washington, D.C. 20250

Peter Ramatowski
Assistant Director
Planning and Assessment
Water Resources Council
2120 L Street, N.W.
Washington, D.C. 20037

Robert Shevin, Esquire
Attorney General
The Capitol
Tallahassee, Florida 32304

Harmon Shields
Department of Natural Resources
Crown Building
202 Blunt Street
Tallahassee, Florida 32304

Eastern Tin
Chief, Bureau of Land and Water Management
Division of State Planning
Department of Administration
660 Apalachee Parkway
Tallahassee, Florida 32304

Cecil Vanes
Chairman, County Commission Franklin County
Apalachicola, Florida 32320
$904-653.9558$
Tenet

Kenneth Woodburn
Environmental Advisor Office of the Governor The Capitol
Tallahassee, Florida 32304

Attendance List

Porum on Apalachicola River

wame
Ann H. Berger
Prank T. Carlson
Lillian F. Dean
Thomas S. Talley
Lawrence R. Green
Hugh A . McClellan
William Stmens
Rice Odell
Jeff zinn
Cdr. Phillip C. Johnson
Tim Maywalt
Michelle Lodge
Robert L. Eastman
R.M. Housley

Ken Tucker
Dan Dunford
Vicki Tschinkel
Margarita Castellon.
Charles R. Futch
Eastern W. Tin
Charles L. Blalock
John R. Hill, Jr.
Louis J. Atkins
Allan Hersch
Joe Yovino
Richard Gardner
John Banta
John Clark
Robert J. Livingston
T.T. (Trux) Moebs

Vance Hughes
Robert L. Howell
Bill Millhouser

Organization

Phone

634-4235
OC2M
343-2101
The Research Group (404)577-1341
USFWS-DOI (904)769-0552
COE - Mobile (205)690-2777
COE - Mobile (205)690-2724
COE-Wash., D.C.
CF
0x3-1590
797-4351
CF 797-4342

Apalachicola Times (904)653-8868
Bur. of Outdoor Bec. (202) 343-4793
Forest Service (202) 447-7465
FIA Attorney General's office (904)488-7033
Fla. Eame \&FEeshwater Fish Comm. (904)488-6661
Fla. Department Env. Regulation (904)488-4807
Treasurer of Fla. (904)488-5796
Fla. Dept. of Natural Resources (904)487-1715
Fla., Bur. of Land \& Water Mat. (904) 488-4925
COE
(605) 690-2511

Office, Chief of Eng. (202)693-7093
NW Fla. Water Mgt. Distirct (904)487-1770
FWS
FWS, Atlanta
OCZM/NOAA
C
343-8095
(404) 881-5781

634-4241
797-4337
CF 797-4360
Fla. State Univ. (904)644-1466
EPA Region 4 (404)881-4727
EPA, Wash., D.C: (202)426-2704
Frankiln County, Fla. (904)653-8861
OCZM-NOAA
634-4235

UNITED ETATES DEPARTMENT OF COMMERCE National Oeeanic and Atmeapherie Achininturation

Coastal Zone Management Advisory Committee 3300 Whitehaven Street, N.W. Washington, D.C. 20235 202/634-6791

February 1, 1977

Dr. Robert Livingston
Associate Professor
Biological Sciences
Conradi Building, Room 213
Florida State University
Tallahassee, Florida 32306
Dear Dr. Livingston:
This is to confirm your recent phone conversation with members of the Office of Coastal Zone Management staff requesting you to address the Coastal Zone Management Advisory Committee at its next meeting in Tallahassee. We are pleased that you will be able to join us on February 23 and welcome you to attend the entire meeting.

We are interested in hearing your presentation on the proposed Corps of Engineers' dam project along the Apalachicola River.

Enclosed for your information are an agenda and a list of the Committee membership.

Thank you for your assistance. We look forward to a productive meeting. The Comittee staff will be in touch with you regarding final arrangements.

Sincerely,
Wehewah.
William C. Brewer
NOAA General Counsel
Chairman, CZM Advisory Conmittee
Enclosures

[^0]: Figure 10. Surface chlorophyll a for Apalachicola Bay.

[^1]: PRIONOTUS SCIJULUS

